Stateless ICN Forwarding with P4 towards Netronome NFP-based Implementation

Aytac Azgin, Ravishankar Ravindran, Guo-Qiang Wang

aytac.azgin, ravi.ravindran, gq.wang@huawei.com

Huawei Research Center, Santa Clara, CA

ICN Summary

- ICN enables content-centric communication
 - Replaces current IP's host-centric design
 - Content can be fetched from anywhere, irrespective of location
- Various ICN solutions exist
 - Content-centric Networking (CCN) and Named-data Networking (NDN) represent the leading approaches
- CCN/NDN architecture
 - Pull-based solution (i.e., request/response) with Interest/Data primitives
 - Provides additional features:
 - in-network caching using Content Store (CS),
 - stateful forwarding with Pending Interest Table (PIT)
 - integrated security within packets (through signatures)
 - Also supports multicasting, multi-homing, and mobility

Packet Forwarding in CCN/NDN

Stateful Forwarding

- CCN/NDN by default uses stateful forwarding
 - In PIT, routers keep information on received requests:
 - content name, incoming/outgoing interfaces, nonces (if implemented), timeout
 - Stateful forwarding has multiple purposes
 - Aggregate incoming requests (e.g., same name, different incoming interface and nonce values)
 - Prevent attacks targeting a content name (as requests targeting the same name are suppressed at the edge)
 - Create breadcrumbs for the Data packets (received Data packets are checked with PIT entries for a match)

Problems with Stateful Forwarding*

- Still, we see concerns with stateful forwarding
 - Aggregation is limited to edges
 - Shown to not fully prevent attacks
 - And introduces additional overhead, in storage and processing

- What remains is the breadcrumb advantage
 - which can be replicated using stateless forwarding with inpacket filters
 * "pit/LESS: Stateless Forwarding in Content Centric Networks", A. Azgin, et al.

Stateless Forwarding Design - Choices

- Use an in-packet filter, which carries reverse path information
 - Optional hop-by-hop header, updated at each supported hop along the path

2 Bytes

Type = PIT CBF

- Different alternatives for the in-packet filter
 - **Bloom filter** → Static field
 - Constant size, bits are set until received by content source
 - On reverse path, no modification is possible
 - Only requires **look-up and forward** operation
 - Counting bloom filter → Dynamic field
 - Consists of 2 hop-by-hop optional headers
 - a constant size Bloom filter component, a variable-sized counter field (encoded counter to reduce overhead)
 - On reverse path, update is possible (removing checkedentries)
 - Requires, look-up, update, and forward operation
 - Dynamic in-packet filter
 - Non-bloom filter based filter

2 Bytes

Length = L[B] + L[C]

L[B]+L[C] Bytes

Encoded CBF

Which Stateless Forwarding Approach?

Packet Flow in Stateless Forwarding

Stateful ICN Forwarding with P4*

Parse nested TLVs

Encoding dependent fields of packet type, content name, name components, nonce, etc.

* "NDN.p4: Programming Information-centric Data Planes", S. Signorella, et al.

Stateless ICN Forwarding with P4

Basic Metrics of Interest

Storage/processing overheads

- For stateful forwarding, PIT requirements
- Processing overhead for each scenario

Forwarding performance

 Typical forwarding latency for received requests, depending on forwarding operation

Combined analysis

Stateful and stateless traffic at different ratios, impact of one on the other, etc.

Integrating to Netronome NFP

- Netronome's NFP (used on Agilio ISA) allows for more realistic implementations with better features
 - High parallelized processing capabilities, flexible storage options, and the integration of P4 and C
- As our main purpose is to demonstrate ICN capabilities with improved features, Agilio ISA offers a good design option for us
- We have other testing scenarios to get a better sense on the impact of ICN
 - Label based forwarding in ICN
 - Require a Forwarding Label Table (FLT) to use in conjunction with FIB
 - Additional variable sized packet headers to support the use of forwarding label
 - Flow-driven ICN forwarding
 - Require Flow Tables to store active flow information and to perform lookup
 - Additional packet headers to represent Flow Identifiers