
Stateless ICN Forwarding with P4

towards Netronome NFP-based

Implementation

Aytac Azgin, Ravishankar Ravindran, Guo-Qiang Wang

Huawei Research Center, Santa Clara, CA

aytac.azgin, ravi.ravindran, gq.wang@huawei.com

ICN Summary
� ICN enables content-centric communication

� Replaces current IP’s host-centric design

� Content can be fetched from anywhere, irrespective of location

� Various ICN solutions exist
� Content-centric Networking (CCN) and Named-data Networking

(NDN) represent the leading approaches

� CCN/NDN architecture
� Pull-based solution (i.e., request/response) with Interest/Data

primitives

� Provides additional features:
� in-network caching using Content Store (CS),

� stateful forwarding with Pending Interest Table (PIT)

� integrated security within packets (through signatures)

� Also supports multicasting, multi-homing, and mobility

Packet Forwarding in CCN/NDN
Receive Interest:

/ContentName/ChunkID

Receive Data:

/ContentName/ChunkID

CS PIT

FIB

Forwarding Logic

ICN Router

Routing

Agent

ICN Network

Controller

In
c
o
m
in
g
 F
a
c
e
s

O
u
tg
o
in
g
 F
a
c
e
s

ICN Router

ICN Router

31

6

2

5

4

7

Check CS

(Perform exact

name match)

Check PIT

(Perform exact

name match)

Insert new PIT entry ,

and Check FIB

(Perform LPM)
Respond

with Data

Update

PIT entry

Forward

Interest

Drop

InterestNo FIB

entry

Content exists

No CS

match

No PIT match

Matching

PIT entry

Receive

Interest

Matching

FIB entry

1

2

3

6

4

5

7

Content

Name

Type

(= D)

Content

Name

Type

(= I)
Optional TLV

Headers

Optional TLV

Headers
Signature TLV

Content

Message

Interest

Message

Stateful Forwarding

� CCN/NDN by default uses stateful forwarding

� In PIT, routers keep information on received requests:

� content name, incoming/outgoing interfaces, nonces (if

implemented), timeout

� Stateful forwarding has multiple purposes

� Aggregate incoming requests (e.g., same name, different

incoming interface and nonce values)

� Prevent attacks targeting a content name (as requests targeting

the same name are suppressed at the edge)

� Create breadcrumbs for the Data packets (received Data

packets are checked with PIT entries for a match)

� Still, we see concerns with stateful forwarding
� Aggregation is limited to edges

� Shown to not fully prevent attacks

� And introduces additional overhead, in storage and processing

� What remains is the breadcrumb advantage
� which can be replicated using stateless forwarding with in-

packet filters

Problems with Stateful Forwarding*

Ratio of Interests

that return a Data

packet

Problem: Interests with

no Data return

What happens: Entries

are stored within PIT, until

timeout (~4s)

Observations:

(1) Increased memory requirements to

represent worst-case scenario

(2) Increased latency to access entries

* “pit/LESS: Stateless Forwarding in Content Centric Networks”, A. Azgin, et al.

� Different alternatives for the in-packet filter
� Bloom filter →Static field

� Constant size, bits are set until received by content
source

� On reverse path, no modification is possible

� Only requires look-up and forward operation

� Counting bloom filter →Dynamic field
� Consists of 2 hop-by-hop optional headers

� a constant size Bloom filter component, a variable-sized counter
field (encoded counter to reduce overhead)

� On reverse path, update is possible (removing checked-
entries)

� Requires, look-up, update, and forward operation

� Dynamic in-packet filter
� Non-bloom filter based filter

� Use an in-packet filter, which carries reverse path information

� Optional hop-by-hop header, updated at each supported hop along the path

Stateless Forwarding Design - Choices

Type = PIT CBF Length = L[B] + L[C]

Bloom filter Encoded Counter

Encoded CBF

2 Bytes 2 Bytes L[B]+L[C] Bytes

L[B] Bytes L[C] Bytes

Which Stateless Forwarding Approach?

Observation:

Bloom filter introduces

significant overhead,

triggered by false positives

Regular bloom filter performance

Number of hops

Observation:

Proposed counting bloom

filter (CBF) avoids false

positives significantly and

reduces the overall overhead

Packet Flow in Stateless Forwarding

Check CS

(Perform exact

name match)

Respond

with Data

Check FIB

(Perform LPM

and extract

interface)

Check BFD

(Extract local

filter)

Drop

Interest
No CS

match

Matching FIB

entry Update

in-packet

filter

Forward

Interest

Content exists

Incoming

Interest

Check CS

(Perform exact

name match)

Drop

Data

Check IMT

Update in-

packet filter

Drop

Data
No CS

match

Matching

entry
Update

in-packet

filter

Forward

Data

Content exists

Incoming

Data

No

match

Stateful ICN Forwarding with P4*

� Parse nested TLVs

� Encoding dependent fields of packet type, content name,

name components, nonce, etc.

* “NDN.p4: Programming Information-centric Data Planes”, S. Signorella, et al.

Stateful memory to store longer term entries

(lasting for multiple seconds)

Interest +

No entry

Interest + Existing entry

or Data

Interest & Data

Interest

PIT use introduces additional

complexities for the design

Dynamic hash-based

entries, can cause collisions

Frequent read-write for

every received packet

ethernet

Match Action Tables

INPUT PARSER

Hash Map

Table

Count

Table

FIB Table

Counting name components

Use component_array and

#components to create component

hashes (if Data, component hashes

are skipped)

Perform longest prefix matching on

component hashes to determine

interface (if Data, bypassed to Filter

Table)

TLV-Type Content name Component array In-packet filter

Outgoing Interface (3)
Includes name hash

Component hash array (2) In-packet filter (4)#components (1)

Recursively extracted/parsed packet headers
Lower layer headers

1

2

3

Filter Table
4

Combine in-packet filter with local filter

to create outgoing in-packet filter

Utilizes ingress interface

Metadata processed/created during Match-Action tables

(if Data, local filter is extracted to

determine outgoing interface metrics

and the new in-packet filter)

We can also separate Filter Table

into two tables according to packet

type

Routing

Table
5

Use interface metrics, exported from FIB Table (for

Interest) or Filter Table (for Data) to create egress_out

ICN-P4 Forwarding Engine

Stateless ICN Forwarding with P4

Basic Metrics of Interest

� Storage/processing overheads

� For stateful forwarding, PIT requirements

� Processing overhead for each scenario

� Forwarding performance

� Typical forwarding latency for received requests,

depending on forwarding operation

� Combined analysis

� Stateful and stateless traffic at different ratios, impact of

one on the other, etc.

Integrating to Netronome NFP
� Netronome’s NFP (used on Agilio ISA) allows for more realistic

implementations with better features
� High parallelized processing capabilities, flexible storage options, and the

integration of P4 and C

� As our main purpose is to demonstrate ICN capabilities with
improved features, Agilio ISA offers a good design option for us

� We have other testing scenarios to get a better sense on the impact
of ICN
� Label based forwarding in ICN

� Require a Forwarding Label Table (FLT) to use in conjunction with FIB

� Additional variable sized packet headers to support the use of forwarding label

� Flow-driven ICN forwarding
� Require Flow Tables to store active flow information and to perform lookup

� Additional packet headers to represent Flow Identifiers

