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ICN Summary
� ICN enables content-centric communication

� Replaces current IP’s host-centric design

� Content can be fetched from anywhere, irrespective of location

� Various ICN solutions exist
� Content-centric Networking (CCN) and Named-data Networking 

(NDN) represent the leading approaches

� CCN/NDN architecture 
� Pull-based solution (i.e., request/response) with Interest/Data 

primitives

� Provides additional features:
� in-network caching using Content Store (CS), 

� stateful forwarding with Pending Interest Table (PIT)

� integrated security within packets (through signatures)

� Also supports multicasting, multi-homing, and mobility



Packet Forwarding in CCN/NDN
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Stateful Forwarding

� CCN/NDN by default uses stateful forwarding

� In PIT, routers keep information on received requests:

� content name, incoming/outgoing interfaces, nonces (if 

implemented), timeout

� Stateful forwarding has multiple purposes

� Aggregate incoming requests (e.g., same name, different 

incoming interface and nonce values)

� Prevent attacks targeting a content name (as requests targeting 

the same name are suppressed at the edge)

� Create breadcrumbs for the Data packets (received Data 

packets are checked with PIT entries for a match)



� Still, we see concerns with stateful forwarding
� Aggregation is limited to edges

� Shown to not fully prevent attacks

� And introduces additional overhead, in storage and processing

� What remains is the breadcrumb advantage
� which can be replicated using stateless forwarding with in-

packet filters

Problems with Stateful Forwarding*

Ratio of Interests 

that return a Data 

packet

Problem: Interests with 

no Data return

What happens: Entries 

are stored within PIT, until 

timeout (~4s)

Observations: 

(1) Increased memory requirements to 

represent worst-case scenario

(2) Increased latency to access entries

* “pit/LESS: Stateless Forwarding in Content Centric Networks”, A. Azgin, et al.



� Different alternatives for the in-packet filter
� Bloom filter →Static field 

� Constant size, bits are set until received by content 
source

� On reverse path, no modification is possible

� Only requires look-up and forward operation

� Counting bloom filter  →Dynamic field
� Consists of 2 hop-by-hop optional headers

� a constant size Bloom filter component, a variable-sized counter 
field (encoded counter to reduce overhead)

� On reverse path, update is possible (removing checked-
entries)

� Requires, look-up, update, and forward operation

� Dynamic in-packet filter
� Non-bloom filter based filter

� Use an in-packet filter, which carries reverse path information

� Optional hop-by-hop header, updated at each supported hop along the path

Stateless Forwarding Design - Choices

Type = PIT CBF Length = L[B] + L[C]

Bloom filter Encoded Counter

Encoded CBF

2 Bytes 2 Bytes L[B]+L[C] Bytes

L[B] Bytes L[C] Bytes



Which Stateless Forwarding Approach?

Observation: 

Bloom filter introduces 

significant overhead, 

triggered by false positives

Regular bloom filter performance

Number of hops

Observation: 

Proposed counting bloom 

filter (CBF) avoids false 

positives significantly and 

reduces the overall overhead



Packet Flow in Stateless Forwarding 
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Stateful ICN Forwarding with P4*

� Parse nested TLVs 

� Encoding dependent fields of packet type, content name, 

name components, nonce, etc.

* “NDN.p4: Programming Information-centric Data Planes”, S. Signorella, et al.
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Match Action Tables 
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Stateless ICN Forwarding with P4



Basic Metrics of Interest

� Storage/processing overheads

� For stateful forwarding, PIT requirements

� Processing overhead for each scenario

� Forwarding performance

� Typical forwarding latency for received requests, 

depending on forwarding operation

� Combined analysis

� Stateful and stateless traffic at different ratios, impact of 

one on the other, etc.



Integrating to Netronome NFP
� Netronome’s NFP (used on Agilio ISA) allows for more realistic 

implementations with better features
� High parallelized processing capabilities, flexible storage options, and the 

integration of P4 and C 

� As our main purpose is to demonstrate ICN capabilities with 
improved features, Agilio ISA offers a good design option for us

� We have other testing scenarios to get a better sense on the impact 
of ICN
� Label based forwarding in ICN

� Require a Forwarding Label Table (FLT) to use in conjunction with FIB

� Additional variable sized packet headers to support the use of forwarding label

� Flow-driven ICN forwarding
� Require Flow Tables to store active flow information and to perform lookup

� Additional packet headers to represent Flow Identifiers


