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ICN Summary

» ICN enables content-centric communication
Replaces current IP’s host-centric design
Content can be fetched from anywhere, irrespective of location

» Various ICN solutions exist

Content-centric Networking (CCN) and Named-data Networking
(NDN) represent the leading approaches

» CCN/NDN architecture
Pull-based solution (i.e., request/response) with Interest/Data
primitives
Provides additional features:
in-network caching using Content Store (CS),
stateful forwarding with Pending Interest Table (PIT)
integrated security within packets (through signatures)
Also supports multicasting, multi-homing, and mobility



Packet Forwarding in CCN/NDN
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Stateful Forwarding

» CCN/NDN by default uses stateful forwarding

In PIT, routers keep information on received requests:

content name, incoming/outgoing interfaces, nonces (if
implemented), timeout

Stateful forwarding has multiple purposes

Aggregate incoming requests (e.g., same name, different
incoming interface and nonce values)

Prevent attacks targeting a content name (as requests targeting
the same name are suppressed at the edge)

Create breadcrumbs for the Data packets (received Data
packets are checked with PIT entries for a match)



Problems with Stateful Forwarding*

» Still, we see concerns with stateful forwarding
Aggregation is limited to edges
Shown to not fully prevent attacks
And introduces additional overhead, in storage and processing
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Observations:

(1) Increased memory requirements to
represent worst-case scenario

(2) Increased latency to access entries

» What remains is the breadcrumb advantage
which can be replicated using stateless forwarding with in-

packet filters

* “pit/LESS: Stateless Forwarding in Content Centric Networks”, A. Azgin, et al.



» Use an in-packet filter, which carries reverse path information
Optional hop-by-hop header, updated at each supported hop along the path

» Different alternatives for the in-packet filter
Bloom filter —Static field

Constant size, bits are set until received by content
source

On reverse path, no modification is possible
Only requires look-up and forward speration ;g 2 Bytes L[B]+L[C] Bytes

Counting bloom filter —Dynamic field | Type=PITCBF | Length=L[B]+L[C] | Encoded CBF

Consists of 2 hop-by-hop optional headers

a constant size Bloom filter component, a variable-sized counter Bloom filter Encoded Counter
field (encoded counter to reduce overhead) L[B] Bytes L[C] Bytes
On reverse path, update is possible (removing checked-
entries) max(c,in)
Requires, look-up, update, and forward operation
Dynamic in-packet filter ;::;er(in) ! —

Non-bloom filter based filter BF(out)

LF(in)

packet type setting ‘ . max(c,out)




Observation:

Proposed counting bloom
filter (CBF) avoids false
positives significantly and
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Packet Flow in Stateless Forwarding
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Stateful ICN Forwarding with P4*

» Parse nested TLVs
Encoding dependent fields of packet type, content name,
name components, nonce, etc.
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* “NDN.p4: Programming Information-centric Data Planes”, S. Signorella, ef al.



Stateless ICN Forwarding with P4

Recursively extracted/parsed packet headers
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Basic Metrics of Interest

» Storage/processing overheads
For stateful forwarding, PIT requirements
Processing overhead for each scenario

» Forwarding performance

Typical forwarding latency for received requests,
depending on forwarding operation

» Combined analysis

Stateful and stateless traffic at different ratios, impact of
one on the other, etc.



» Netronome’s NFP (used on Agilio ISA) allows for more realistic
implementations with better features

High parallelized processing capabilities, flexible storage options, and the
integration of P4 and C

» As our main purpose is to demonstrate ICN capabilities with
improved features, Agilio ISA offers a good design option for us

» We have other testing scenarios to get a better sense on the impact
of ICN

Label based forwarding in ICN
Require a Forwarding Label Table (FLT) to use in conjunction with FIB
Additional variable sized packet headers to support the use of forwarding label

Flow-driven ICN forwarding
Require Flow Tables to store active flow information and to perform lookup
Additional packet headers to represent Flow Identifiers



