Stateless ICN Forwarding with P4
towards Netronome NFP-based
Implementation

Aytac Azgin, Ravishankar Ravindran, Guo-Qiang Wang

aytac.azgin, ravi.ravindran, gq.wang@huawei.com

Huawei Research Center, Santa Clara, CA

ICN Summary

» ICN enables content-centric communication
Replaces current IP’s host-centric design
Content can be fetched from anywhere, irrespective of location

» Various ICN solutions exist

Content-centric Networking (CCN) and Named-data Networking
(NDN) represent the leading approaches

» CCN/NDN architecture
Pull-based solution (i.e., request/response) with Interest/Data
primitives
Provides additional features:
in-network caching using Content Store (CS),
stateful forwarding with Pending Interest Table (PIT)
integrated security within packets (through signatures)
Also supports multicasting, multi-homing, and mobility

Packet Forwarding in CCN/NDN

Receive Interest:

/ContentName/ChunkID ICN Router

-

-

Type | Content

Optional TLV | Interest

ICN Router Receive Data: =D Name Headers Message
/ContentName/ChunkID
Controlle Content [Optional TLV Signature TLV Content
: Name Headers Message
—
Routing
Agent
|
g Receive 3 Check PIT Update 4
S Interest (Perform exact [— PIT entry
a) name match)
I 1 Check CS |
FI 22— (Perform exact | Drop °
| name match) J, Interest
ICN Router R |
Insert new PIT entry J
\L and Check FIB Forward 7
Interest

2 Respond
with Data

6 (Perform LPM)

Stateful Forwarding

» CCN/NDN by default uses stateful forwarding

In PIT, routers keep information on received requests:

content name, incoming/outgoing interfaces, nonces (if
implemented), timeout

Stateful forwarding has multiple purposes

Aggregate incoming requests (e.g., same name, different
incoming interface and nonce values)

Prevent attacks targeting a content name (as requests targeting
the same name are suppressed at the edge)

Create breadcrumbs for the Data packets (received Data
packets are checked with PIT entries for a match)

Problems with Stateful Forwarding*

» Still, we see concerns with stateful forwarding
Aggregation is limited to edges
Shown to not fully prevent attacks
And introduces additional overhead, in storage and processing

Number of active requests at a content router

|

-
=

=

-/} Increased latency
e

[~ 5.0x10 =

[well behavedness ratioffor network traffic

Problem: Interests with
no Data return

What happens: Entries
are stored within PIT, until
timeout (~4s)

PIT storage requirements (in GB)

Observations:

(1) Increased memory requirements to
represent worst-case scenario

(2) Increased latency to access entries

» What remains is the breadcrumb advantage
which can be replicated using stateless forwarding with in-

packet filters

* “pit/LESS: Stateless Forwarding in Content Centric Networks”, A. Azgin, et al.

» Use an in-packet filter, which carries reverse path information
Optional hop-by-hop header, updated at each supported hop along the path

» Different alternatives for the in-packet filter
Bloom filter —Static field

Constant size, bits are set until received by content
source

On reverse path, no modification is possible
Only requires look-up and forward speration ;g 2 Bytes L[B]+L[C] Bytes

Counting bloom filter —Dynamic field | Type=PITCBF | Length=L[B]+L[C] | Encoded CBF

Consists of 2 hop-by-hop optional headers

a constant size Bloom filter component, a variable-sized counter Bloom filter Encoded Counter
field (encoded counter to reduce overhead) L[B] Bytes L[C] Bytes
On reverse path, update is possible (removing checked-
entries) max(c,in)
Requires, look-up, update, and forward operation
Dynamic in-packet filter ;::;er(in) ! —

Non-bloom filter based filter BF(out)

LF(in)

packet type setting ‘ . max(c,out)

Observation:

Proposed counting bloom
filter (CBF) avoids false
positives significantly and

Which Stateless Forwarding Approach?
1000 m
¢t 12 Number of hops
Observation: 1001 X :: i /
Bloom filter introduces T LAAM
significant overhead, B , ot
triggered by false positives = 4 L L /
2 a1 "
o | *
g 0.1 o * ‘ "
<
Regular bloom filter performance
0.01 r
1 10

Number of interfaces

18 19
17 4 M Encoded CBF M Classic BF 18 -
g et
E 16 € 17 -
2 & s
€7 T g
v g Y £
g% 53
T~ 4 £ 14 -
S 8s -
- ExE
j=N = w13
o= 3
g 12 8 12
E1 (-3
-4 11

[
-

-

192

184 176
Filter length (#bits)

168 160

100

reduces the overall overhead

M Encoded CBF M Classic BF

256 248 240 232

Filter length (#bits)

224 216

/

Check CS
(Perform exact
name match)

\

Respond
with Data

/

Check CS
(Perform exact
name match)

\

Drop
Data

Packet Flow in Stateless Forwarding

Check FIB
—| (Perform LPM Drop
and extract Interest
interface)
7
"4 ':ggilt(eet _| Forward
n-
Check BFD / filter Interest
(Extract local
filter)
Drop
- Check IMT — Data
/
4 .Update | Forward
Updatein- | _—| in-packet Data
packet filter filter

Stateful ICN Forwarding with P4*

» Parse nested TLVs
Encoding dependent fields of packet type, content name,
name components, nonce, etc.
/\

R‘:)?:S'fer Stateful memory to store longer term entries
B read . B - (lasting for multiple seconds)
write | Interest + Existind”éﬁ?r“
~ o N v _ |orData] . R . _
count hashName pit_table | fib_ table { updatePit | |routeData *x\Dyn.am'C hash-based o
table table table table entries, can cause collisions
P Interest & Data .
A StoreNumOf ComputeName | ReadPpitEntry() | | setEgr() UpdatePitentry() | | setOutputlface() Frequent read-write for
R Components() Hashes() CleanPitEntry() Drop() Drop() Drop() evéry received packet
S Interest |
E —» > > - - > -
Interest +components
R - No entry C1 A
N C12
C123 i
‘ packet\Type" name_hash \ hasFlBentry _isInPit
[packetType || Name hash l |§|nP|t \ ;
D | H
[components ﬁ‘—\ clz | ﬁlZST ﬁhasFlb.:nt."y' ~—e__egress_spec | P’IT introd dditi |
- " Metadaa - PIT useintroduces additiona
""""""""""""""""""""""""""""""""""" s complexities for the design
ethernet [small_tiv0 | small name || components[0] | | components[l] |
components[2] | [components[3] | | nonce |
Packet headers

* “NDN.p4: Programming Information-centric Data Planes”, S. Signorella, ef al.

Stateless ICN Forwarding with P4

Recursively extracted/parsed packet headers

Match Action\Jables

- Use component_array and

Counting name components

1
\l/ #components to create component
—- hashes (if Data, component hashes
\l/ are skipped)
3 Perform longest prefix matching on
component hashes to determine

interface (if Data, bypassed to Filter

- Table)
Combine in-packet filter with locat fiter | > —>

to create outgoing in-packet filter -

N ~~
(if Data, local filter is extracted to - Yy
:ﬁ;e:rr]n; nne;\?vuif_oggklgﬁﬁzf)e metrics | Use interface metrics, exported from FIB Table (for
P ! Interest) or Filter Table (for Data) to create egress_out
We can also separate Filter Table /,
into two tables according to packet b

type

Metadata processed/created during Match-Action tables

Basic Metrics of Interest

» Storage/processing overheads
For stateful forwarding, PIT requirements
Processing overhead for each scenario

» Forwarding performance

Typical forwarding latency for received requests,
depending on forwarding operation

» Combined analysis

Stateful and stateless traffic at different ratios, impact of
one on the other, etc.

» Netronome’s NFP (used on Agilio ISA) allows for more realistic
implementations with better features

High parallelized processing capabilities, flexible storage options, and the
integration of P4 and C

» As our main purpose is to demonstrate ICN capabilities with
improved features, Agilio ISA offers a good design option for us

» We have other testing scenarios to get a better sense on the impact
of ICN

Label based forwarding in ICN
Require a Forwarding Label Table (FLT) to use in conjunction with FIB
Additional variable sized packet headers to support the use of forwarding label

Flow-driven ICN forwarding
Require Flow Tables to store active flow information and to perform lookup
Additional packet headers to represent Flow Identifiers

