
Simplifying Datacenter Network Debugging
with PathDump

	
†University	of	Edinburgh,	‡Cornell	University	

Praveen	Tammana†	 Rachit	Agarwal‡	 Myungjin	Lee†	

Network problems are inevitable

•  Result: Mismatch between network behavior and operator intent
•  Network debuggers

•  Existing designs: in-network techniques
•  Use programmability of network switches to capture debugging information

 Loops

Failures, bugs	

Silent random packet drops 	

Faulty interface	

2

X

Human errors	

Black hole	

1 3
1 32

X
X
X

Complex networks and debuggers

Complex networks
--source: TechRepublic.com

Data plane snapshots

Network debuggers
even more complex	

Per-switch per-packet logs

Packet mirroring

Packet sampling
Dynamic rule installation

PathDump: (Simple) In-network + End-hosts

•  Use end-hosts for most debugging problems

•  In-network functionality for a small number of debugging problems

In-network debugging functionality

Network
elements

Server Server

Debugging functionality
at end-host

In-network
debugging

ProblemProblem

PathDump in a nutshell
•  Before forwarding a packet, checks a condition
•  If met, embeds its ID into packet header

Switch

•  No data plane snapshots
•  No per-switch per-packet logs
•  No packet sampling
•  No packet mirroring
•  No dynamic rule installation

•  Captures each and every packet header
•  Stores and updates flow-level statistics
•  Exposes API for debugging purposes

•  Enables slicing-and-dicing of statistics across flows
(potentially stored at various end-hosts)

Aggregator

Server

PathDump architecture

Dst	Src	

Embed	link	ID	

1. Switch embeds unique ID (e.g., link ID)

User	packet	 1

2
3

4

•  Packet header space limitation

•  Cherrypick [SOSR’15] for current deployments

ToR	

Aggregate	

Core	

1	 3	

4	

2	

PathDump architecture

Dst	Src	

User	packet	

Picked	link	

Only one shortest path
from Core to Dst

1

2
3

4

More details in our paper

1. Switch embeds unique ID (e.g., link ID)

ü  72-port Fat-tree : 90K servers
ü  62-port VL2 : 20K servers

ToR	

Aggregate	

Core	

2	

PathDump architecture
2. End-host captures packet path and updates flow-level statistics

Dst	Src	

2	

PathDump architecture

DstSrc	

Packet stream
OVS	

Trajectory
Information Base

TIB	

< 5 tuple flow id >

path: set of switch ids

start, end, #pkts, #bytes

	Store
Agent	

2. End-host captures packet path and updates flow-level statistics

Congested link

Traffic matrix

Load imbalance

PathDump architecture
3. Aggregator runs debugging applications

Aggregator

Server

Event-driven
 debugging applications

post alarm

Request/Reply

On-demand
 debugging applications

Path conformance
Black hole Silent packet drop

Congested linkLoad imbalance

On-demand vs. Event-driven

4. Max-Coverage algorithm
•  A – B : 2
•  B – C : 1
•  B – D : 1

Example: Silent random packet drop diagnosis

A	 B	

C	

D	

A	-	B	-	C	

A	-	B	-	D	

Aggregator

2. Alarm()
 3. getPaths()

•  No packet drop hint
•  Software/Hardware bug

1. Install(query)

 getPoorTCPFlows()

 getPoorTCPFlows()

Other debugging applications
•  Load imbalance diagnosis

•  Real-time routing loop detection

•  Blackhole diagnosis

•  TCP performance anomaly diagnosis
•  TCP incast and outcast

•  Traffic measurement
•  Traffic matrix, heavy-hitter detection, etc. More details in our paper

https://github.com/PathDump

