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Network problems are inevitable

•  Result: Mismatch between network behavior and operator intent
•  Network debuggers

•  Existing designs: in-network techniques
•  Use programmability of network switches to capture debugging information
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Complex networks and debuggers

Complex networks
--source: TechRepublic.com

Data plane snapshots

Network debuggers 
even more complex	

Per-switch per-packet logs
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Dynamic rule installation



PathDump: (Simple) In-network + End-hosts

•  Use end-hosts for most debugging problems

•  In-network functionality for a small number of debugging problems
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PathDump in a nutshell
•  Before forwarding a packet, checks a condition  
•  If met, embeds its ID into packet header 

Switch

•  No data plane snapshots
•  No per-switch per-packet logs
•  No packet sampling
•  No packet mirroring
•  No dynamic rule installation

•  Captures each and every packet header
•  Stores and updates flow-level statistics
•  Exposes API for debugging purposes

•  Enables slicing-and-dicing of statistics across flows 
(potentially stored at various end-hosts)
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PathDump architecture
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•  Packet header space limitation

•  Cherrypick [SOSR’15]  for current deployments
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PathDump architecture
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More details in our paper

1. Switch embeds unique ID (e.g., link ID)

ü  72-port   Fat-tree : 90K servers
ü  62-port   VL2        : 20K servers
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PathDump architecture
2. End-host captures packet path and updates flow-level statistics
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PathDump architecture
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< 5 tuple flow id >

path: set of switch ids

start, end, #pkts, #bytes

	Store
Agent	

2. End-host captures packet path and updates flow-level statistics



Congested link

Traffic matrix

Load imbalance

PathDump architecture
3. Aggregator runs debugging applications
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4. Max-Coverage algorithm
•  A – B   : 2
•  B – C   : 1
•  B – D   : 1

Example: Silent random packet drop diagnosis
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2. Alarm()
 3. getPaths()


•  No packet drop hint
•  Software/Hardware bug

1. Install(query)


 getPoorTCPFlows()


 getPoorTCPFlows()




Other debugging applications
•  Load imbalance diagnosis

•  Real-time routing loop detection

•  Blackhole diagnosis

•  TCP performance anomaly diagnosis
•  TCP incast and outcast

•  Traffic measurement
•  Traffic matrix, heavy-hitter detection, etc. More details in our paper

https://github.com/PathDump


