
1

Technion – Israel Institute of Technology

Project in Computer Networks
Spring 2019

Heavy-Hitter Detection on

SmartNIC - using P4

Team:

Yevhenii Liubchyk, Maria Shestakova

 Supervised by:

Itzik Ashkenazi, Prof. Ori Rotenstreich

2

Contents

Introduction & Motivation __ 3

Objectives __ 4

Goals ___ 4

Estimated Timetable __ 4

Expected results__ 4

Previous works __ 5

Background __ 6

Netronome SmartNIC ___ 6

P4 Language __ 6

Programmer Studio 6.0 ___ 6

HashPipe Algorithm ___ 7

Program outline and plan ___ 8

Outline ___ 8

Plan __ 8

Commands __ 8

Packet processing code – hh.p4 (using P4 language) _____________________________________ 9

Packet processing code – plugin.с (using C language) ___________________________________ 10

Estimation code – getResult.py (using Python language) _________________________________ 11

Console Code – Makefile___ 13

Launch program through the console __ 14

Graph Description __ 15

Tests depending on the parameter K__ 16

Tests depending on the hash-table size with constant number of hash-tables _________________ 17

Tests depending on the number of hash-tables and hash-table size with constant memory size ___ 18

Packet processing time depending on the number of packets ______________________________ 19

Tests depending on the parameter NUM __ 20

Conclusions ___ 21

Learning and Future Directions ___ 22

Learning ___ 22

Future Directions ___ 22

References __ 23

3

Introduction & Motivation

Many network management applications can benefit from finding the set of flows contributing

significant amounts of traffic to a link. Such flows are called “Heavy Hitters”.

Monitoring heavy hitters is required for example, to relieve link congestion or to detect network

anomalies and attacks. Furthermore, heavy-hitters identification is done in small time scales, it can

enable dynamic routing of the heavy flows and also dynamic flow scheduling.

In order to respond quickly to short-term traffic variations, it is desirable to run heavy-hitter

monitoring at all switches and (Network Interface Card) NICs in the network all the time. It should

identify packets belonging to heavy-hitter flows in a reasonable accuracy and by meeting hardware

constraints such as a limited number of accesses to the memory storing state and a limited amount of

memory available.

The target of HashPipe algorithm is to track the K heaviest flows with high accuracy using limited

available memory. The HashPipe can be implemented in programmable hardware such as Netronome

SmartNic using P4 language.

4

Objectives

Goals

• Implement HashPipe algorithm on a programmable hardware Netronome SmartNic using P4

language.

• Evaluate the accuracy and quality of the algorithm

Estimated Timetable

• April – research Netronome SmartNIC and P4 environment.

• May – Implement HashPipe algorithm using P4 language.

• June – Find Algorithm that read and calculate real heavy-hitter flows. Treatment and counting

heavy-hitter flows from HashPipe algorithm.

• August – Demo & Presentation delivery. Analyzing accuracy and quality of HashPipe

algorithm.

Expected results

Inject traffic using real captured ISP backbone link traffic (from CAIDA) and produce the following

statistics:

Overall Flow count

• When reporting xxx (TBD) heavy hitters: % of False Negative (Real heavy-hitter that was not

detected)

• When reporting xxx (TBD) heavy hitters: % of False Positive (“fake” heavy-hitter detection)

5

Previous works

Among the previous works in this field, we must mention first and foremost the work of Ori

Rottenstreich, Srinivas Narayana, Vibhaalakshmi Sivaraman, Jennifer Rexford, S. Muthukrishnan [1].

They proposed an algorithm to detect heavy traffic flows within the constraints of emerging

programmable switches, and making this information available within the switch itself, as packets are

processed.

Their solution, HashPipe, uses a pipeline of hash tables to track heavy flows preferentially, by

evicting lighter flows from switch memory over time. They prototype HashPipe with P4, walking

through the switch programming features used to implement their algorithm.

Through simulations on a real traffic trace, they showed that HashPipe achieves high accuracy in

finding heavy flows within the memory constraints of switches today.

It is this algorithm that we have implemented and evaluated in our project.

6

Background

Netronome SmartNIC

Netronome SmartNIC is high-performance intelligent

networking solutions that enable rapid innovation at

lower cost and power through domain-specific, open and

efficient programming models and ability to offload

network and security processing.

Netronome SmartNIC environment that includes:

• Agilio CX SmartNIC

• Interfaces: 2x10Gb

• Processor: NFP-4000

• Memory: 2GB

There are two physical ports in SmartNIC. But in our

project we don't use them. We work only with two

virtual ports.

The Netronome SmartNIC has a five-core processor.

P4 Language

• P4 is a programming language designed to allow programming of packet forwarding planes.

• P4 is a domain-specific language with a number of constructs optimized around network data

forwarding

Programmer Studio 6.0

The Programmer Studio in the Agilio P4C SDK 6.0 is the industry’s first P4 and C GUI-based

Integrated Development Environment (IDE) for dynamically programming new and innovative

networking capabilities on the AgilioCX

In work with Programmer Studio we use [4].

7

HashPipe Algorithm

HashPipe Algorithm tracks the K heaviest flows with high

accuracy using limited available memory.

Example of processing a packet using HashPipe[1]:

A packet with a key S enters the switch pipeline (a), and

since it isn’t found in the first table, it is inserted there (b).

Key B (that was in the slot currently occupied by S) is carried

with the packet to the next stage, where it hashes to the slot

containing key E. But since the count of B is larger than that of E, B is written to the table and E is

carried out on the packet instead (c). Finally, since the count of L (that E hashes to) is larger than that

of E, L stays in the table (d). The net effect is that the new key S is inserted in the table, and the

minimum of the three keys B, E, and L—namely E—is evicted in its favor.

8

Program outline and plan

Outline

Plan

1. Get the capture file as the input of our program.

2. Using the tcpreplay command, reproduce network traffic from the pcap file.

Packets from pcap file arrive to the Netronome SmartNIC through virtual port vf0_0.

3. The Netronome SmartNIC accepts packages from virtual port vf0_0, checks that their protocol

is TCP or UDP (With the P4 code) and drop packet if not.

4. All TCP and UDP packets processed using HashPipe Algorithm and are saved in the Memory of

the Netronome SmartNIC and after that sent to a virtual port vf0_1.

5. Using the nfp_rtsym command, read from Netronome SmartNIC memory and save it in table

“HashPipe alg’ flows” for further processing.

6. Using the tcpdump command, save all data from virtual port vf0_1 to the table “Real “Heavy-

hitters” flows”.

7. As a result, we have two tables: “HashPipe alg’ flows” and “Real “Heavy-hitters” flows”.

So, we evaluate the HashPipe Algorithm by comparing two tables and derive its accuracy and

average place of packets from “HashPipe alg’ flows” in the sorted list of “Real “Heavy-

hitters” flows” starting from heaviest.

Commands

• tcpdump – is a type of packet analyzer software utility that monitors and logs TCP/IP traffic

passing between a network and the computer on which it is executed.

• tcpreplay – is a tool for replaying network traffic from files saved with tcpdump or other tools

which write pcap files

• nfp_rtsym – Read/write contents of runtime symbol

9

Packet processing code – hh.p4 (using P4 language)

The hh.p4 file processes packets received by the Netronome SmartNIC through virtual port vf0_0.

1. Parse the network IPv4 packets.

2. Check their protocol.

If the packet protocol is neither TCP nor UDP, then drop it.

3. For all valid packets (whose protocol is TCP and UDP):

a. process packets using the HashPipe Algorithm which is implemented by the function in

plugin.c file and save results to the Netronome SmartNIC memory;

b. send packets to virtual port vf0_1.

Packet processing code was written using [2] and [3].

10

Packet processing code – plugin.с (using C language)

The plugin.c file implements HashPipe Algorithm:

1. Variables NUM_SKETCH and SKETCH_COLUMN_COUNT there are the number of hash-

tables and hash-table size respectively.

Size of Netronome SmartNIC memory that we use represented by the formula:

Size = (number of cores) x (number of hash-tables) x (hash-table size)

Where number of cores for our Netronome SmartNIC equal 5.

2. Struct Heavy_Hitter stores flow identifier (for our project it is 5-tuple) and its counter.

3. The variable sketch is used to save hash-tables obtained as a result of HashPipe Algorithm.

4. Function hash_func describes the hash-functions used in HashPipe Algorithm. Function get

hash-table number from 0 to NUM_SKETCH and return the number from 0 to

SKETCH_COLUMN_COUNT that defines the place in this hash-table.

5. Function pif_plugin_hashpipe_algorithm implements HashPipe Algorithm.

Packet processing code was written using [2] and [3].

11

Estimation code – getResult.py (using Python language)

The getResult.py file processes and compares files RealHeavyHitterFlows and HashPipeFlows,

which were obtained as a result of the execution of the packet processing code on Netronome

SmartNIC, and calculates results.

After processing all packets using Netronome SmartNIC there are two files:

1. HashPipeFlows which is obtained by reading the variable sketch from Netronome SmartNIC

memory using command nfp-rtsym;

2. RealHeavyHitterFlows which is the result of a command tcpdump.

HashPipeFlows

RealHeavyHitterFlows

For each file we create a specialized container with a data structure where Key is 5-tuple of packet and

Value is counter of packet (number of packet with similar Key in corresponding file):

1. Container for HashPipeFlows is

2. Container for RealHeavyHitterFlows is

File getResult.py gets a variable K as an input, which defines a number of “heavy-hitter” flows which

we want to check. If the value of K is greater than the number of packets in one of the structures

HashPipeFlows or RealHeavyHitterFlows then we reduce the value of K to the size of the smaller of

the structures, since we cannot check the larger number of packets:

In the graphs, this value is denoted as Optimal K.

12

Then we calculate the results:

1. Accuracy of the HashPipe algorithm:

2. Average place of packets from HashPipe Algorithm flows in the sorted list of Real Heavy-

hitter flows starting from the heaviest:

Below is an example of calculation:

• Accuracy: in the first K=3 packets in the table “Real Heavy-Hitter Flows” there are 2 packages

from the first K=3 packets of the table “HashPipe Alg’ Flows”

• Average: first K=3 packets of the table “HashPipe Alg’ Flows” are in places 1, 3, 5 in the table

“Real Heavy-Hitter Flows”

13

Console Code – Makefile

The Makefile is designed to run the program through the console.

The Makefile includes 3 сommands:

1. “make tcpdump” – runs command tcpdump to read information from the virtual port vf0_1

and writes the result to file RealHeavyHitterFlows.

2. “make tcpreplay NUM=... CAPTURE=...” – runs command tcpreplay to replay traffic from

Capture file to Netronome SmartNIC through the virtual port vf0_0 and after that runs

command nfp-rtsym to save information from the variable sketch of all five cores of the

Netronome SmartNIC memory to file HashPipeFlows.

Arguments:

a. The variable NUM is the number of packets that we send.

b. The variable CAPTURE is the name of pcap file which we send.

3. “make result K=...” – run python file getResult.py for processing and comparing files

RealHeavyHitterFlows and HashPipeFlows and calculating results.

Argument:

a. The variable K is number of heavy-hitter flows which we want to check.

14

Launch program through the console

Before starting the program:

1. Create a project in Programmer Studio 6.0 with files hh.p4, plugin.c and

user_config.p4cfg.

2. Run Build.

3. Put files getResult.py and Makefile on the server.

For each test:

1. Run Start Debugging in the project which was created in Programmer Studio 6.0.

2. Open 2 consoles.

3. In the first console, run the command “make tcpdump”:

4. In the second console, run the command “make tcpreplay NUM=... CAPTURE=...”:

5. Waiting for the end of writing to the file RealHeavyHitterFlows. After that in the second

console, run the command “make result K=...”:

6. Run End Debugging

15

Graph Description

Output↓ Input→ K 12xC 5xBxC NUM

Accuracy Graph 1.1 Graph 2.1 Graph 3.1 Graph 4.1

Average Graph 1.2 Graph 2.2 Graph 3.2 Graph 4.2

To evaluate the HashPipe Algorithm, we ran tests with different parameters and built graphs of the

dependence of Accuracy and Average on several arguments:

1. K – number of heavy-hitter flows which we want to check.

2. 12xC – memory size through resizing hash-tables with a constant number of hash-tables

3. BxC – the ratio of the hash-table size to number of hash-tables with a constant memory size,

i.e. a constant product of number of hash-tables by hash-table size

4. NUM – number of packets that we send.

For each argument we build to graphs:

1. Accuracy of HashPipe Algorithm (Errors False Negative and False Positive)

2. Average place of packets from HashPipe Alg’ flows in the sorted list of Real "Heavy-Hitter"

flows starting from heaviest

In addition to Average we also display two parameters allowing better analysis of graphs:

1. Optimal K = min(K, Number of HashPipeFlows, Number of RealHeavyHitterFlows) – the

biggest number of “heavy-hitter” flows which we can check (not bigger than K)

2. Optimal Average = (Optimal K + 1) / 2 – Average which we get for Accuracy=100%

16

Tests depending on the parameter K

Graph 1.1 - Accuracy

Graph 1.2 - Average

50

55

60

65

70

75

80

85

90

95

100

A
cc

u
ra

cy
, %

K – number of “heavy-hitter” flows which we check

Accuracy, NUM = 100 000, Size = 5x12x128

Accuracy, %

0

500

1000

1500

2000

2500

3000

3500

4000

4500

P
la

ce
 o

f
p

ac
ke

t

K – number of “heavy-hitter” flows which we check

Average, NUM = 100 000, Size = 5x12x128

Average Optimal Average Optimal K

17

Tests depending on the hash-table size with constant number of

hash-tables

Graph 2.1 - Accuracy

Graph 2.2 - Average

40

50

60

70

80

90

100

12x2 12x4 12x8 12x16 12x32 12x64 12x128 12x256 12x512

A
cc

u
ra

cy
, %

BxC – Number of hash-tables x Hash-table size

Accuracy, NUM = 100 000, K = 2000, Size = 5x12xC

Accuracy, %

0

500

1000

1500

2000

2500

3000

12x2 12x4 12x8 12x16 12x32 12x64 12x128 12x256 12x512

P
la

ce
 o

f
p

ac
ke

t

BxC – Number of hash-tables x Hash-table size

Average, NUM = 100 000, K = 2000, , Size = 5x12xC

Average Optimal Average Optimal K

18

Tests depending on the number of hash-tables and hash-table

size with constant memory size

Graph 3.1 - Accuracy

Graph 3.2 - Average

50

55

60

65

70

75

80

85

90

95

100

3x512 6x256 12x128 24x64 48x32 96x16 192x8 384x4

A
cc

u
ra

cy
, %

BxC – Number of hash-tables x Hash-table size

Accuracy, NUM = 100 000, K = 2000, Size = 5xBxC

Accuracy, %

0

500

1000

1500

2000

2500

3000

3x512 6x256 12x128 24x64 48x32 96x16 192x8 384x4

P
la

ce
 o

f
p

ac
ke

t

BxC – Number of hash-tables x Hash-table size

Average, NUM = 100 000, K = 2000, , Size = 5xBxC

Average Optimal Average Optimal K

19

Packet processing time depending on the number of packets

As we can see for a large number of packets, packet processing time is linearly dependent on the

number of packets.

Then in spite of the possibly unequal time spent processing different packets, we can consider the

packet processing time and packet number parameters as equivalent. And also the graphs that will

depend on these parameters will be similar to each other

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Ti
m

e,
 s

e
c

NUM – number of sending packets

Time

Time

20

Tests depending on the parameter NUM

Graph 4.1 - Accuracy

Graph 4.2 - Average

70

75

80

85

90

95

100

2000 10000 100000 500000 1000000 2000000

A
cc

u
ra

cy
, %

NUM – number of sending packets

Accuracy, K = 2000, Size = 5x12x128

Accuracy, %

-400

100

600

1100

1600

2100

2000 10000 100000 500000 1000000 2000000

P
la

ce
 o

f
p

ac
ke

t

NUM – number of sending packets

Average, K = 2000, Size = 5x12x128

Average Optimal Average Optimal K

21

Conclusions

From the constructed graphs we made the following conclusions:

Graphs 1.1 and 1.2

➢ Accuracy is directly proportional to K and Average is inversely proportional to K.

➢ If value of K more than the number of different packets received using the HashPipe

Algorithm, then the results become permanent, since we cannot check a larger number of

packets than there are in the file.

➢ The HashPipe Algorithm shows good results for many parameters.

• For example, for NUM = 100 000, Memory size = 5x12x128, K = 1000 we got

Accuracy ≈87%.

• Even for largest value of K such as 4000 we got Accuracy not less than 60%.

Graphs 2.1 and 2.2:

➢ Accuracy is highly dependent on memory size. For example, for standard parameters

NUM=100 000 and K=2000:

• for memory size = 5x12x4 we got Accuracy ≈52%

• for memory size = 5x12x128 we got Accuracy ≈80%

• for memory size = 5x12x512 we got Accuracy ≈93%

➢ For good results, it is important that the memory size (number of places for different packets)

be significantly larger than K. Otherwise, we will not have enough space to save the required

number of packets and we will get bad results.

• As we can see in the graphs from 12x2 to 12x64 we have a fast-growing value of

Optimal K (i.e. Optimal K depend on memory size and we use all available memory).

As a result, we get a low value of Accuracy and a fast-growing value of Average

similarly to Optimal K and memory size.

• In the same time from 12x64 to 12x512 value of Optimal K reaches the value of real K

and stabilizes (i.e. there is enough space to save all necessary packets). As a result, we

get a fast-growing value of Accuracy and decreasing value of Average (and

approaching the value of Optimal Average).

Graphs 3.1 and 3.2:

➢ For constant memory size best results are achieved when the number of hash-tables and the

hash-table size are approximately equal. For example, for memory size = 5x48x32 we got

Accuracy ≈81%

➢ On the other hand, if one of the parameters is greatly reduced, then the results will deteriorate.

For example:

• for memory size = 5x3x512 we got Accuracy ≈60%

• for memory size = 5x384x4 we got Accuracy ≈76%

Graphs 4.1 and 4.2:

➢ For a large number of packets, we can assume that the graphs, depending on the number of

packets, are identical to the graphs of the processing time of these packets

➢ The number of sent (NUM) packets affects the results much weaker than K or memory size

➢ But NUM strongly affects the execution time of the program.

22

Learning and Future Directions

Learning

• Learned to work with Netronome SmartNIC

• Learned to use IDE Programmer Studio 6.0

• Practiced writing code in the programming languages P4, C and Python

• Practiced using console commands to work with traffic and with SmartNIC (tcpreplay,

tcpdump, nfp-rtsym)

Future Directions

For HashPipe Algorithm:

• In the future, should compare the HashPipe Algorithm with older and known algorithms, check

in which cases it gives a better result and in which not, find weaknesses of the Algorithm

• It is also worth analyzing the dependence of the accuracy of the HashPipe Algorithm on the

choice of hash-functions

For Program:

• Develop a more universal way of processing data obtained from Netronome SmartNIC for

applying the program to different types of packets

• Find a way to zero Netronome SmartNIC memory and restart recording via the command

tcpdump for more convenient, quick and automatic use of the program

23

References

1. Ori Rottenstreich, Srinivas Narayana, Vibhaalakshmi Sivaraman, Jennifer Rexford, S.

Muthukrishnan, “Heavy-Hitter Detection Entirely in the Data Plane”, 2017

2. https://github.com/open-nfpsw/M-Sketch

3. Xiaoban Wu, Yan Luo, “Network Measurement with P4 and C on Netronome NFP”

4. https://github.com/open-nfpsw/p4_basic_lb_metering_nic

For P4 language learning:

5. Noa Zilberman, “P4 Tutorial Welcome”

6. Mihai Budiu, Chris Dodd, “The P4 Programming Language”, 2017

7. https://github.com/p4lang/tutorials

https://github.com/open-nfpsw/M-Sketch
https://github.com/open-nfpsw/p4_basic_lb_metering_nic
https://github.com/p4lang/tutorials

