Jakub Kicinski

BPF Sandbox | NETRONGME

As a goal of BPF IR JITing of BPF IR to most RISC cores should be very easy
BPF VM provides a simple and well understood execution environment

Designed by Linux kernel-minded architects making sure there are no
implementation details leaking into the definition of the VM and ABls

Unlike higher level languages BPF is a intermediate representation (IR) which
provides binary compatibility, it is a mechanism

BPF is extensible through helpers and maps allowing us to make use of special
HW features (when gain justifies the effort)

© 2018 NETRONOME SYSTEMS, INC. 2

BPF Ecosystem | NETRONGME

Kernel infrastructure improves, including verifier/analyzer, JIT compilers for all
common host architectures and some common embedded architectures like

ARM or x86

Linux kernel community is very active in extending performance and improving
BPF feature set, with AF_XDP being a most recent example

Android APF targets smaller processors in mobile handsets for filtering wake ups
from remote processors (most likely network interfaces) to improve battery life

© 2018 NETRONOME SYSTEMS, INC.

BPF Universe

| NETRONOGME

program
ro = 0
r2 = *(u32 *)(rl1 + 4)
rl = *(u32 *)(rl + 0)
r3 = rl
r3 += 14
if r3 > r2 goto 7
ro =1

r2 = *(u8 *)(rl + 12)
if r2 != 34 goto 4
rl = *(u8 *)(rl1 + 13)

ro = 2
if rl == 34 goto 1
re =1

© 2018 NETRONOME SYSTEMS, INC.

helpers

user space

array

device

data storage maps

LPM hash

anchor maps

00

perf

socket
event

BPF Universe | NETRONGME

e Translate the program code into device’s native machine code
Use advanced instructions
Optimize instruction scheduling
Optimize 1/O
e Provide device-specific implementation of the helpers
e Use hardware accelerators for maps
Use of richer memory architectures
Algorithmic lookup engines
TCAMs
e Filter packets directly in the NIC
e Handle advanced switching/routing
e Application-specific packet reception policies

© 2018 NETRONOME SYSTEMS, INC. 5

| NETRONOGME

» Optimized for standard server based cloud data centers

 Based on the Netronome Network Flow Processor 4xxx line

» Low profile, half length PCle form factor for all versions

 Memory: 2GB DRAM

« <25W Power, typical 15-20W

2x 10GbE

© 2018 NETRONOME SYSTEMS, INC.

2x 25GbE

1x 40GbE

2x 40GbE

SoC Architecture-Conceptual Components

| NETRONOGME

Flow processing cores |
distributed into ‘islands’ |

ASIC based packet
processors, crypto
engines, etc...

Multi-threaded transactional memory
engines and accelerators optimized for

network processing

of 12 (up to 7 islands) ;‘ /, | ’
7 T ETETET
- M"P!'a"’i"cmaré” A¢ce|etators /!
_// v - / /;,, / ,//)
Processing Cores » Memory Engines
High Performance Distributed Mesh Fabric ;4bT_bpS dis{tr:b”ted
apric-crucia
PCle foundation for many

MAC/SerDes

Up to 100 Gbps 4x PCle Gen 3x8

© 2018 NETRONOME SYSTEMS, INC.

core architectures

7

NFP SoC Architecture

N>

o>

© 2018 NETRONOME SYSTEMS, INC.

PACKET PROCESSING CORES
INGRESS

48 PACKET

CHARALEERIZER PROCESSING CORES

EGRESS
TRAFFIC PACKET PACKET
MANAGER MODIFY REORDER
INTERNAL MEMORY UNITS

(RRRN
(RUNN]
—————

(RRRN]
[ARRN]
~——

PACKET PROCESSING CORES
INGRESS

48 PACKET

CHANACIEIEER PROCESSING CORES

EGRESS
TRAFFIC PACKET PACKET
MANAGER MODIFY REORDER

FLOW PROCESSING CORES

as = am@DE

as 2 amPE

as= ov@E

—_—
i e
i s

as 2 amDE

1 e
HEEmme
as'® amPE

cas = CrM@E

as' 2 am@PE

v

ARM SUBSYSTEM

as =

cw@é

HE
[|] sussvstem

| NETRONOGME

EXTERNAL MEMORY UNITS
A ER
E3Es
[| o]

[w | a]

oo

SECURITY

“* mm e
EMceElN | | <

“* mm e
w®z HH RS

INTERLAKEN LA

as =

om DIE

as =

av@ =

E3E
A

o
o

PCle-GEN3 4X8

PCI CTLR
X
M E L
O mm J
— --
X
c-rm@ B X-lov 8
0 [)
PCI CTLR
- -. (P: 1
i X
o™ E X-lov 8
O mm J
PCI CTLR
ez [pr—
~on NS g i

NFP SoC Architecture

| NETRONOGME

BPF
programs

o>

© 2018 NETRONOME SYSTEMS, INC.

PACKET PROCESSING CORES
INGRESS

CHARACTERIZER POIRCHEY

PROCESSING CORES

TRAFFIC PACKET PACKET

MANAGER MODIFY REORDER

ARM SUBSYSTEM

=
= HE
am PE [|] sussvstem

SECURITY

“* mm e
on @z I R

BPF maps

PACKET PROCESSING CORES
INGRESS

48 PACKET

CHANACIEIEER PROCESSING CORES

EGRESS
TRAFFIC PACKET PACKET
MANAGER MODIFY REORDER

| PCle-GEN3 4X8
|
CRYPTO e PCICTLR
am GB : HE \ _
8

cm@: .-

as B chua
INTERLAKEN LA TOMAN R 3
o @ E X-lov F

as i - . ILKN

OM@E .- £ as B PCICTLR roma e,
c

m@_ X-lov T g

w= HEE

ez RS s [£y
|
CTM@ .- >

NFP SoC Packet Flow

M
C

o>

© 2018 NETRONOME SYSTEMS, INC.

PACKET PROCESSING CORES
INGRESS

48 PACKET

CHARALEERIZER PROCESSING CORES

TRAFFIC PACKET PACKET
MANAGER MODIFY REORDER
INTERNAL MEMORY UNITS

(RRRN
(RUNN]
—————

(RRRN]
[ARRN]
~——

PACKET PROCESSING CORES
INGRESS

48 PACKET

CHANACIEIEER PROCESSING CORES

EGRESS
TRAFFIC PACKET PACKET
MANAGER MODIFY REORDER

FLOW PROCESSING CORES

as = am@DE

as 2 amPE

as= ov@E

—_—
i e
i s

as 2 amDE

1 e
HEEmme
as'® amPE

cas = CrM@E

as' 2 am@PE

v

ARM SUBSYSTEM

=
i HE
o @ H] [|] sussvstem

| NETRONOGME

EXTERNAL MEMORY UNITS
A ER
E3Es
[| o]

[w | a]

oo

SECURITY

“* mm e
EMceElN | | <

“* mm e
w®z HH RS

INTERLAKEN LA

as s -. ILKN
oz B

o= HE
@ E BHE

E3E
A

PCle-GEN3 4X8

PCI CTLR
X
M E L
O mm J
— --
X
c-rm@i X-lov 8
0 [)
PCI CTLR
- -. (P:l
i X
o™ E X-lov 8
O mm J
PCI CTLR
ez [pr—
~on NS g i

NFP SoC Packet Flow

M

C

o>

© 2018 NETRONOME SYSTEMS, INC.

PACKET PROCESSING CORES
INGRESS

48 PACKET

CHARALEERIZER PROCESSING CORE

TRAFFIC PACKET PACKET
MANAGER MODIFY REORDEF
INTERNAL MEMORY UNITS

(RRRN
(RUNN]
—————

(RRRN]
[ARRN]
~——

PACKET PROCESSING CORES
INGRESS

48 PACKET

CHANACIEIEER PROCESSING CORES

EGRESS
TRAFFIC PACKET PACKET
MANAGER MODIFY REORDER

as = am@DE

as 2 amPE

UEEENE
b |

ST oM | JIE

—_—
i e
i s

as 2 amDE

1 e
HEEmme
as'® amPE

cas = CrM@E

as' 2 am@PE

YT SO DO T TR

=
i HE
o @ H] [|] sussvstem

| NETRONOGME

EXTERNAL MEMORY UNITS
A ER
E3Es
[| o]

[w | a]

oo

v

SECURITY

“* mm e
EMceElN | | <

“* mm e
w®z HH RS

INTERLAKEN LA

as s -. ILKN
oz B

o= HE
@ E BHE

E3E
A

PCle-GEN3 4X8

PCI CTLR
X
M E L
O mm J
— --
X
c-rm@i X-lov 8
0 [)
PCI CTLR
- -. (P:l
i X
o™ E X-lov 8
O mm J
PCI CTLR
ez [pr—
~on NS g i

NFP SoC Packet Flow

M
C

o>

© 2018 NETRONOME SYSTEMS, INC.

PACKET PROCESSING CORES
INGRESS

48 PACKET

CHARALEERIZER PROCESSING CORE

TRAFFIC PACKET PACKET
MANAGER MODIFY REORDEF
INTERNAL MEMORY UNITS

(RRRN
(RUNN]
—————

(RRRN]
[ARRN]
~——

PACKET PROCESSING CORES
INGRESS

48 PACKET

CHANACIEIEER PROCESSING CORES

EGRESS
TRAFFIC PACKET PACKET
MANAGER MODIFY REORDER

as = am@DE

as 2 amPE

o o [| [
D |

ST oM | JIE

as 2 amDE

1 e
HEEmme
as'® amPE

cas = CrM@E

as' 2 am@PE

v

YT SO DO T TR

=
i HE
o @ H] [|] sussvstem

| NETRONOGME

EXTERNAL MEMORY UNITS
A ER
E3Es
[| o]

[w | a]

oo

SECURITY
‘-
o]
oS =
[| | sux

o @ 5 -- CRYPTO

INTERLAKEN LA

as s -. ILKN
oz B

o= HE
@ E BHE

E3E
A

PCle-GEN3 4X8

PCI CTLR
X
M E L
O mm J
— --
X
c-rm@i X-lov 8
0 [)
PCI CTLR
- -. (P:l
i X
o™ E X-lov 8
O mm J
PCI CTLR
ez [pr—
~on NS g i

NFP SoC Packet Flow

CGME

PACKET PROCESSING CORES
INGRESS

48 PACKET

CHARACIERIZER PROCESSING CORE

M
C EGRESS

TRAFFIC PACKET
MANAGER MODIFY

PACKET
REORDEH

INTERNAL MEMORY UNITS

(RRRN
(RUNN]
——

PACKET PROCESSING CORES
INGRESS

(RRRN]
[ARRN]
~—

48 PACKET

CHANACIEIEER PROCESSING CORES

><

MANAGER MODIFY REORDER

© 2018 NETRONOME SYSTEMS, INC.

as = am@DE

as 2 amPE

o o [| [
D |

ST oM | JIE

cis H
m |
m i

s ‘™
]y
=

%

‘.lll

YT SO DO T TR

as =

HE
avPE [|] sussvstem
SECURITY

B | su
@z » B
oS =
[| | sux
@z WK
as = g
@z R
«= HEEE
@ E BHE

[N
H
=

-
H
oo

et
EEE

PCI CTLR
w= [NEEE -
~on B gy i
~on mm i |
PCl CTLR
as # - roma B P,
m@i == X-lov ':!(
~on B prm i

NFP SoC Packet Flow

M
C

M
A

© 2018 NETRONOME SYSTEMS, INC.

PACKET PROCESSING CORES
INGRESS

48 PACKET

CHARACAERIZER PROCESSING CORE

TRAFFIC PACKET PACKET
MANAGER MODIFY REORDEH

PACKET PROCESSING CORES
INGRESS

48 PACKET

CHANACIEIEER PROCESSING CORES

MANAGER MODIFY REORDER

YT SO DO T TR

=
= HE
o @ = [|] sussvstem

| NETRONOGME

SECURITY

‘-
@2 w N

‘
el [] su J‘
w®z HH RS l

PCle-GEN3 4X8

PCICTLR
as |8 _
oD E = .

Memory Architecture - Latencies | NETRONGME

GPRS/xfer regs - 1 cycle \
LMEM - 1-3 cycles LMEM
(1 KB) x50 BPF

workers

Thread (x4 per Core)
800Mhz Core

DRAM
CLS - 20-50 cycles

(2+GB)
CTM (256 KB CLS
CTM - 50-100 cycles (256 KB) (64)

IMEM - 150-250 cycles [IMEM (4 MB)]

DRAM - 150-500 cycles

© 2018 NETRONOME SYSTEMS, INC. 15

Memory Architecture | NETRONGME

Flow Processing Core Cluster Target Memory
Thread 0 Thread 1 Thread 2 Dispatcher Thread Thread

| | CPP Read X and- | |
e e Yield e e s

, Yield i CPPWrite Y i i

i Yield | : 1 —— -

3 — - Push Value X !

N S , PullValueY | |

Yield = : : : ; : R

i : ~ ReturnValueY : :

| Yield | i | i

Multithreaded Transactional Memory Architecture Hides Latency

© 2018 NETRONOME SYSTEMS, INC. 16

Kernel Offload - BPF Offload Memory Mapping | NETRONGME

)

x50 BPF

10 Registers workers

(64-bit, 32-bit
subregisters)

Thread (x4 per Core)

800Mhz Core
.
Driver DRAM
512 byte (2+GB)
stack CTM (256 KB)
Maps, varying _
sizes (IMEM(4 MB)]

© 2018 NETRONOME SYSTEMS, INC. 17

Programming Model | NETRONGME

e Program is written in standard manner

e LLVM compiled as normal

LLVM

User

e iproute/tc/libbpf loads the program |

requesting offload @D

e The nfp_bpf jit.c converts the BPF
bytecode to NFP machine code (and
we mean the actual machine code :))

e Translation reuses a significant amount
of verifier infrastructure

Kernel

Hardware

© 2018 NETRONOME SYSTEMS, INC. 18

BPF Object Creation (maps) | NETRONGME

1. Get map file descriptors:
For existing maps - get access to a file descriptor:

i. from bpffs (pinned map) - open a pseudo file
ii. byID -use BPF_MAP_GET _FD_BY_ID bpf syscall command
Create new maps - BPF_ MAP_CREATE bpf syscall command:

union {
struct { /* anonymous struct used by BPF_MAP_CREATE command */
map_type; /* one of enum bpf_map_type */
key_size; /* size of key in bytes */
value_size; /* size of value in bytes */
max_entries; /* max number of entries in a map */
map_flags; /* BPF_MAP_CREATE related
* flags defined above.
*/
inner_map_fd; /* fd pointing to the inner map */
numa_node; /* numa node (effective only if
* BPF_F_NUMA_NODE is set).
*/
map_name[BPF_OBJ_NAME_LEN];
map_ifindex; /* ifindex of netdev to create on */
btf_fd; /* fd pointing to a BTF type data */
btf_key_type_id; /* BTF type_id of the key =*/
btf_value_type_id; /% BTF type_id of the value */
H

© 2018 NETRONOME SYSTEMS, INC. 19

BPF object creation (programs) | NETRONGME

1. Get program instructions;
2. Perform relocations (replace map references with file descriptors IDs);
3. Use BPF_PROG _LOAD to load the program;

union {
struct { /* anonymous struct used by BPF_PROG_LOAD command */

prog_type; /* one of enum bpf_prog_type */
insn_cnt;
insns;
license;
log_level; /* verbosity level of verifier =*/
log_size; /* size of user buffer x/
log_buf; /* user supplied buffer =*/
kern_version; /* checked when prog_type=kprobe */
prog_flags;

prog_name[BPF_OBJ_NAME_LEN];

prog_ifindex; /% ifindex of netdev to prep for */
/* For some prog types expected attach type must be known at
* load time to verify attach type specific parts of prog
* (context accesses, allowed helpers, etc).
*/

expected_attach_type;

© 2018 NETRONOME SYSTEMS, INC. 20

BPF Object Creation (1ibbpf) | NETRONGME

e With 1ibbpf use the extended attributes to set the ifindex:

struct {

const *file;

enum prog_type;

enum expected_attach_type;

ifindex;
b
bpf_prog_load_xattr(const struct *attr,
struct **xpob7, *prog_fd);

Normal kernel BPF ABIs are used, opt-in for offload by setting ifindex.

© 2018 NETRONOME SYSTEMS, INC. 21

Map Offload | NETRONUGME

BPF_MAP_CREATE,
BPF_MAP_LOOKUP_ELEM,

BPF BPF_MAP_UPDATE_ELEM . drivers/
! Linux network
BPF_MAP_DELETE_ELEM, \
S BPF_MAP_GET_NEXT_KEY, config lock ney/
ethernet/
kernel/ kernel/ netdevice Zg;onome/
bpf/ bpf/ ops bpt/
syscall.c offload.c (ndo_Dbpf)
is create, free
offlo?ded struct
bpf_map_dev_ops
lookup, update,
delete, get_next_key
Device Control
message
handler

© 2018 NETRONOME SYSTEMS, INC. 22

Map Offload | NETRONUGME

e Maps reside entirely in device memory

e Programs running on the host do not have access to offloaded maps and vice
versa (because host cannot efficiently access device memory)

e User space API remains unchanged

NFP

Kernel

MAPS offloaded maps Ethernet

offloaded
program
bpfilter

© 2018 NETRONOME SYSTEMS, INC. 23

PCle

cls_bpf

.

Map Offload | NETRONUGME

e Each map in the kernel has set of ops associated:

/* map is generic key/value storage optionally accessible by eBPF programs */

struct

/* funcs callable from userspace (via syscall) */
(*map_alloc_check) (union *xattr);

struct *(*map_alloc) (union *attr);
(*map_release)(struct *map, struct *map_file);
(*map_free)(struct *map) ;
(*map_get_next_key) (struct *map, *xkey, *next_key);

/* funcs callable from userspace and from eBPF programs =*/
*(*map_lookup_elem) (struct *map, *xkey);
(*map_update_elem) (struct *map, *key, *value, flags);
(*map_delete_elem)(struct *map, *xkey);

b
e Each map type (array, hash, LRU, LPM, etc.) has its own set of ops which
implement the map specific logic
e Ifmap_ifindex is set the ops are pointed to an empty set of “offload ops”

regardless of the type (bpf_offload_prog_ops)
e Only calls from user space will now be allowed

© 2018 NETRONOME SYSTEMS, INC. 24

| NETRONOGME

Program Offload

e Kernel verifier performs verification and some of common JIT steps for the host
architectures

e For offload these steps cause loss of context information and are incompatible
with the target

e Allow device translator to access the loaded program as-is:
|Ds/offsets not translated:

m structure field offsets

m functions

m map IDs
No prolog/epilogue injected
No optimizations made

For offloaded devices the verifier skips the extra host-centric rewrites.

© 2018 NETRONOME SYSTEMS, INC. 25

Program Offload Lifecycle | NETRONGME

BPE kernel/ kernel/ kernel/
bpf/ bpf/ bpf/
syscall .
syscall.c verifier.c core.c
bpf_prog_offload_init _i i
kernel/ fl)_pt gd_ - _t 0 bpf_prog_offload_- per instruction bpf_prog_offload_- bpf_prog_offload_-
bpf/ allocate data structures i~ verification
for tracking offload -verifier_prep() -translate() -destroy()
offload.c gevice association callback
netdevice ops :: ndo_bpf() netdevice ops :: ndo_bpf()
NEP BPF OFFLOAD VERIFIER _PREP nfp_verify_insn() BPF OFFLOAD TRANSLATE BPF OFFLOAD DESTROY
. allocate and construct driver- perform extra dev-specific run optimizations and machine code free all data structures and
driver -specific program data structures checks; gather context generation machine code image
information

© 2018 NETRONOME SYSTEMS, INC. 26

Program Offload | NETRONGME

e After program has been loaded into the kernel the subsystem specific handling
remains unchanged

e For network programs offloaded program can be attached to device ingress to
XDP (BPF_PROG_TYPE_XDP) or cls_bpf (BPF_PROG_TYPE_SCHED_CLS)

e Program can be attached to any of the ports of device for which it was loaded

e Actually loading program to device memory only happens when it's being
attached

© 2018 NETRONOME SYSTEMS, INC.

27

BPF Offload - Summary | NETRONGME

BPF VM/sandbox is well suited for a heterogeneous processing engine

BPF offload allows loading a BPF program onto a device instead of host CPU

All user space tooling and ABIs remain unchanged

No vendor-specific APls or SDKs

BPF offload is part of the upstream Linux kernel (recent kernel required)

BPF programs loaded onto device can take advantage of HW accelerators such

as HW memory lookup engines

Try it out today on standard NFP server cards! (academic pricing available on open-nfp.org @)

e Reach out with BPF-related questions:
https://help.netronome.com/a/forums/
https://groups.google.com/forum/#!forum/open-nfp
xdp-newbies@vger.kernel.org

e Register for the next webinar in this series!

© 2018 NETRONOME SYSTEMS, INC. 28

