
© 2018 NETRONOME SYSTEMS, INC.

Jakub Kicinski

BPF Hardware Offload Deep Dive

© 2018 NETRONOME SYSTEMS, INC. 2

BPF Sandbox

○ As a goal of BPF IR JITing of BPF IR to most RISC cores should be very easy
○ BPF VM provides a simple and well understood execution environment
○ Designed by Linux kernel-minded architects making sure there are no

implementation details leaking into the definition of the VM and ABIs
○ Unlike higher level languages BPF is a intermediate representation (IR) which

provides binary compatibility, it is a mechanism
○ BPF is extensible through helpers and maps allowing us to make use of special

HW features (when gain justifies the effort)

© 2018 NETRONOME SYSTEMS, INC. 3

BPF Ecosystem

○ Kernel infrastructure improves, including verifier/analyzer, JIT compilers for all
common host architectures and some common embedded architectures like
ARM or x86

○ Linux kernel community is very active in extending performance and improving
BPF feature set, with AF_XDP being a most recent example

○ Android APF targets smaller processors in mobile handsets for filtering wake ups
from remote processors (most likely network interfaces) to improve battery life

© 2018 NETRONOME SYSTEMS, INC. 4

BPF Universe

 r0 = 0

 r2 = *(u32 *)(r1 + 4)

 r1 = *(u32 *)(r1 + 0)

 r3 = r1

 r3 += 14

 if r3 > r2 goto 7

 r0 = 1

 r2 = *(u8 *)(r1 + 12)

 if r2 != 34 goto 4

 r1 = *(u8 *)(r1 + 13)

 r0 = 2

 if r1 == 34 goto 1

 r0 = 1

 ...

array LPM

helpers

data storage maps

hash

device perf
event socket

anchor maps

program

user space

© 2018 NETRONOME SYSTEMS, INC. 5

 r0 = 0

 r2 = *(u32 *)(r1 + 4)

 r1 = *(u32 *)(r1 + 0)

 r3 = r1

 r3 += 14

 if r3 > r2 goto 7

 r0 = 1

 r2 = *(u8 *)(r1 + 12)

 if r2 != 34 goto 4

 r1 = *(u8 *)(r1 + 13)

 r0 = 2

 if r1 == 34 goto 1

 r0 = 1

 ...

array LPM

helpers

data storage maps

hash

device perf
event socket

anchor maps

program

User space

BPF Universe

● Translate the program code into device’s native machine code
○ Use advanced instructions
○ Optimize instruction scheduling
○ Optimize I/O

● Provide device-specific implementation of the helpers
● Use hardware accelerators for maps

○ Use of richer memory architectures
○ Algorithmic lookup engines
○ TCAMs

● Filter packets directly in the NIC
● Handle advanced switching/routing
● Application-specific packet reception policies

© 2018 NETRONOME SYSTEMS, INC. 6

• Optimized for standard server based cloud data centers

• Based on the Netronome Network Flow Processor 4xxx line

• Low profile, half length PCIe form factor for all versions

• Memory: 2GB DRAM

• <25W Power, typical 15-20W

© 2018 NETRONOME SYSTEMS, INC. 7

SoC Architecture-Conceptual Components

4x PCIe Gen 3x8

Multi-threaded transactional memory
engines and accelerators optimized for
network processing

Flow processing cores
distributed into ‘islands’
of 12 (up to 7 islands)

ASIC based packet
processors, crypto
engines, etc…

14Tbps distributed
fabric-crucial
foundation for many
core architecturesUp to 100 Gbps

© 2018 NETRONOME SYSTEMS, INC. 8

NFP SoC Architecture

© 2018 NETRONOME SYSTEMS, INC. 9

NFP SoC Architecture

BPF maps

BPF
programs

© 2018 NETRONOME SYSTEMS, INC. 10

NFP SoC Packet Flow

© 2018 NETRONOME SYSTEMS, INC. 11

NFP SoC Packet Flow

© 2018 NETRONOME SYSTEMS, INC. 12

NFP SoC Packet Flow

© 2018 NETRONOME SYSTEMS, INC. 13

NFP SoC Packet Flow

© 2018 NETRONOME SYSTEMS, INC. 14

NFP SoC Packet Flow

© 2018 NETRONOME SYSTEMS, INC. 15

Memory Architecture - Latencies

NIC

 Chip

Island (x6 per Chip)

CTM (256 KB)

IMEM (4 MB)

DRAM
(2+GB)

CLS
(64 KB)

Thread (x4 per Core)
800Mhz Core

LMEM
(1 KB)

GPRs

x50 BPF
workers

LMEM - 1-3 cycles

CLS - 20-50 cycles

CTM - 50-100 cycles

IMEM - 150-250 cycles

GPRS/xfer regs - 1 cycle

DRAM - 150-500 cycles

© 2018 NETRONOME SYSTEMS, INC. 16

Memory Architecture

Thread 0 Thread 1 Thread 2 Dispatcher Thread Thread

CPP Read X and
Yield

Yield CPP Write Y
Yield

Push Value X

Pull Value Y

Return Value Y
Yield

Yield

Flow Processing Core Cluster Target Memory

Multithreaded Transactional Memory Architecture Hides Latency

© 2018 NETRONOME SYSTEMS, INC. 17

Kernel Offload - BPF Offload Memory Mapping

NIC

 Chip

Island (x6 per Chip)

CTM (256 KB)

IMEM(4 MB)

DRAM
(2+GB)

CLS
(64 KB)

Thread (x4 per Core)
800Mhz Core

LMEM
(1 KB)

GPRs

10 Registers
(64-bit, 32-bit
subregisters)

512 byte
stack

Maps, varying
sizes

Driver

x50 BPF
workers

© 2018 NETRONOME SYSTEMS, INC. 18

Programming Model

● Program is written in standard manner

● LLVM compiled as normal

● iproute/tc/libbpf loads the program
requesting offload

● The nfp_bpf_jit.c converts the BPF
bytecode to NFP machine code (and
we mean the actual machine code :))

● Translation reuses a significant amount
of verifier infrastructure

© 2018 NETRONOME SYSTEMS, INC. 19

BPF Object Creation (maps)

1. Get map file descriptors:
a. For existing maps - get access to a file descriptor:

i. from bpffs (pinned map) - open a pseudo file
ii. by ID - use BPF_MAP_GET_FD_BY_ID bpf syscall command

b. Create new maps - BPF_MAP_CREATE bpf syscall command:
union bpf_attr {

struct { /* anonymous struct used by BPF_MAP_CREATE command */
__u32 map_type; /* one of enum bpf_map_type */
__u32 key_size; /* size of key in bytes */
__u32 value_size; /* size of value in bytes */
__u32 max_entries; /* max number of entries in a map */
__u32 map_flags; /* BPF_MAP_CREATE related

 * flags defined above.
 */

__u32 inner_map_fd; /* fd pointing to the inner map */
__u32 numa_node; /* numa node (effective only if

 * BPF_F_NUMA_NODE is set).
 */

char map_name[BPF_OBJ_NAME_LEN];
__u32 map_ifindex; /* ifindex of netdev to create on */
__u32 btf_fd; /* fd pointing to a BTF type data */
__u32 btf_key_type_id; /* BTF type_id of the key */
__u32 btf_value_type_id; /* BTF type_id of the value */

};

© 2018 NETRONOME SYSTEMS, INC. 20

BPF object creation (programs)

1. Get program instructions;

2. Perform relocations (replace map references with file descriptors IDs);

3. Use BPF_PROG_LOAD to load the program;
union bpf_attr {

struct { /* anonymous struct used by BPF_PROG_LOAD command */
__u32 prog_type; /* one of enum bpf_prog_type */
__u32 insn_cnt;
__aligned_u64 insns;
__aligned_u64 license;
__u32 log_level; /* verbosity level of verifier */
__u32 log_size; /* size of user buffer */
__aligned_u64 log_buf; /* user supplied buffer */
__u32 kern_version; /* checked when prog_type=kprobe */
__u32 prog_flags;
char prog_name[BPF_OBJ_NAME_LEN];
__u32 prog_ifindex; /* ifindex of netdev to prep for */
/* For some prog types expected attach type must be known at
 * load time to verify attach type specific parts of prog
 * (context accesses, allowed helpers, etc).
 */
__u32 expected_attach_type;

};

© 2018 NETRONOME SYSTEMS, INC. 21

BPF Object Creation (libbpf)

● With libbpf use the extended attributes to set the ifindex:

struct bpf_prog_load_attr {
const char *file;
enum bpf_prog_type prog_type;
enum bpf_attach_type expected_attach_type;
int ifindex;

};

int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr,
struct bpf_object **pobj, int *prog_fd);

Normal kernel BPF ABIs are used, opt-in for offload by setting ifindex.

© 2018 NETRONOME SYSTEMS, INC. 22

Map Offload

kernel/
bpf/
syscall.c

kernel/
bpf/
offload.c

drivers/
net/
ethernet/
netronome/
nfp/
bpf/

struct
bpf_map_dev_ops

BPF
syscall

is
offloaded

?

BPF_MAP_CREATE,
BPF_MAP_LOOKUP_ELEM,
BPF_MAP_UPDATE_ELEM,
BPF_MAP_DELETE_ELEM,
BPF_MAP_GET_NEXT_KEY,

create, free

lookup, update,
delete, get_next_key

netdevice
ops

(ndo_bpf)

Linux network
config lock

Device Control
message
handler

© 2018 NETRONOME SYSTEMS, INC. 23

Map Offload

● Maps reside entirely in device memory
● Programs running on the host do not have access to offloaded maps and vice

versa (because host cannot efficiently access device memory)
● User space API remains unchanged

Kernel NFP

offloaded
program

offloaded maps

XDP

maps

cls_bpf

bpfilter

PCIe
Ethernet

© 2018 NETRONOME SYSTEMS, INC. 24

Map Offload

● Each map in the kernel has set of ops associated:

● Each map type (array, hash, LRU, LPM, etc.) has its own set of ops which
implement the map specific logic

● If map_ifindex is set the ops are pointed to an empty set of “offload ops”
regardless of the type (bpf_offload_prog_ops)

● Only calls from user space will now be allowed

/* map is generic key/value storage optionally accessible by eBPF programs */
struct bpf_map_ops {

/* funcs callable from userspace (via syscall) */
int (*map_alloc_check)(union bpf_attr *attr);
struct bpf_map *(*map_alloc)(union bpf_attr *attr);
void (*map_release)(struct bpf_map *map, struct file *map_file);
void (*map_free)(struct bpf_map *map);
int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);

/* funcs callable from userspace and from eBPF programs */
void *(*map_lookup_elem)(struct bpf_map *map, void *key);
int (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
int (*map_delete_elem)(struct bpf_map *map, void *key);

};

© 2018 NETRONOME SYSTEMS, INC. 25

Program Offload

● Kernel verifier performs verification and some of common JIT steps for the host
architectures

● For offload these steps cause loss of context information and are incompatible
with the target

● Allow device translator to access the loaded program as-is:
○ IDs/offsets not translated:

■ structure field offsets
■ functions
■ map IDs

○ No prolog/epilogue injected
○ No optimizations made

For offloaded devices the verifier skips the extra host-centric rewrites.

© 2018 NETRONOME SYSTEMS, INC. 26

Program Offload Lifecycle

kernel/
bpf/
syscall.c

kernel/
bpf/
offload.c

BPF
syscall

kernel/
bpf/
verifier.c

bpf_prog_offload_init()
allocate data structures
for tracking offload
device association

NFP
driver

bpf_prog_offload_-
-verifier_prep()

netdevice ops :: ndo_bpf()

BPF_OFFLOAD_VERIFIER_PREP
allocate and construct driver-
-specific program data structures

per-instruction
verification
 callback

nfp_verify_insn()
perform extra dev-specific
checks; gather context
information

kernel/
bpf/
core.c

bpf_prog_offload_-
-translate()

BPF_OFFLOAD_TRANSLATE
run optimizations and machine code
generation

bpf_prog_offload_-
-destroy()

BPF_OFFLOAD_DESTROY
free all data structures and
machine code image

netdevice ops :: ndo_bpf()

© 2018 NETRONOME SYSTEMS, INC. 27

Program Offload

● After program has been loaded into the kernel the subsystem specific handling
remains unchanged

● For network programs offloaded program can be attached to device ingress to
XDP (BPF_PROG_TYPE_XDP) or cls_bpf (BPF_PROG_TYPE_SCHED_CLS)

● Program can be attached to any of the ports of device for which it was loaded
● Actually loading program to device memory only happens when it’s being

attached

© 2018 NETRONOME SYSTEMS, INC. 28

BPF Offload - Summary

● BPF VM/sandbox is well suited for a heterogeneous processing engine
● BPF offload allows loading a BPF program onto a device instead of host CPU
● All user space tooling and ABIs remain unchanged
● No vendor-specific APIs or SDKs
● BPF offload is part of the upstream Linux kernel (recent kernel required)
● BPF programs loaded onto device can take advantage of HW accelerators such

as HW memory lookup engines
● Try it out today on standard NFP server cards! (academic pricing available on open-nfp.org �)

● Reach out with BPF-related questions:
○ https://help.netronome.com/a/forums/
○ https://groups.google.com/forum/#!forum/open-nfp
○ xdp-newbies@vger.kernel.org

● Register for the next webinar in this series!

