
© 2018 NETRONOME

Jiong Wang, Netronome
September 11, 2018

Demystify eBPF JIT Compiler

1

© 2018 NETRONOME

Agenda

Ø What is JIT Compiler?

Ø What is eBPF JIT Compiler?

Ø eBPF JIT Compiler – Verification Stage

Ø eBPF JIT Compiler – Code Gen Stage

Ø Netronome Flow Processor (NFP) Code Gen Back-end

Ø eBPF JIT Compiler Emerging Features

2

© 2018 NETRONOME

Types of Compilers

A Traditional Static Compiler
Ø Translates source language to machine instructions before execution
Ø Good fit for statically typed language
Ø When people mention compiler they might actually mean toolchain
Ø Compilation → Assembling → Linking → Loading → Execution

int a = 0x1;

int foo()
{

int b = 0x20;
return a + b;

}

ELF
Sections

and
ELF

Segments

.section data
.4byte 0x1

.section text
sub sp, sp, 4
mov r0, 0x20
sw sp, r0
ld_pc r0, a_addr
ld r1, sp
add r0, r1, r0
ret

Runtime
Relocations

and
Allocate

Segments

Jump to Entry!

Static Data

Code

Stack

Before Execution

3

gcc test.c -v will show you more details!

© 2018 NETRONOME

Types of Compilers (Continued)

JIT Compiler

Ø Just In Time During Execution Runtime

Ø Machine instruction generation depends on runtime information
• Dynamically typed language

• Portable without re-compilation

• Low level IR to expose low level information for unified check

Source
Language

IR
(Intermediate

Representation)

IR
Optimization
Verification

x86

ARM

MIPS

PPC
4

© 2018 NETRONOME

Types of Compilers (Continued)

JIT Compiler

Ø Just In Time During Execution Runtime

Ø Machine instruction generation depends on runtime information
• Dynamically typed language

• Portable without re-compilation

• Low level IR to expose low level information for unified check

Source
Language

IR
(Intermediate

Representation)

IR
Optimization
Verification

x86

Arm

MIPS

PPC
5

Before Execution

© 2018 NETRONOME

Types of Compilers (Continued)

JIT Compiler

Ø Just In Time During Execution Runtime

Ø Machine instruction generation depends on runtime information
• Dynamically typed language

• Portable without re-compilation

• Low level IR to expose low level information for unified check

Source
Language

IR
(Intermediate

Representation)

IR
Optimization
Verification

x86

Arm

MIPS

PPC
6

Before Execution

© 2018 NETRONOME

What is a JIT Compiler?

Ø How does a JIT
compiler really look
like? Here is a very
simple example.

7

int main(int argc, char *argv[]) {
// mov eax, 0
unsigned char mov[] = {0xb8, 0x00, 0x00, 0x00, 0x00};
// ret
unsigned char ret[] = {0xc3};

int num = atoi(argv[1]);
memcpy(&mov[1], &num, 4);

void *mem = mmap(NULL, sizeof(mov) + sizeof(ret),
PROT_WRITE | PROT_EXEC,
MAP_ANON | MAP_PRIVATE, -1, 0);

memcpy(mem, mov, sizeof(mov));
memcpy(mem + sizeof(mov), ret, sizeof(ret));

int (*func)() = mem;

return func();
}

Modified from http://blog.reverberate.org/2012/12/hello-jit-world-joy-of-simple-jits.html

© 2018 NETRONOME

What is a JIT Compiler?

Ø How does a JIT
compiler really look
like? Here is a very
simple example.

8

int main(int argc, char *argv[]) {
// mov eax, 0
unsigned char mov[] = {0xb8, 0x00, 0x00, 0x00, 0x00};
// ret
unsigned char ret[] = {0xc3};

int num = atoi(argv[1]);
memcpy(&mov[1], &num, 4);

void *mem = mmap(NULL, sizeof(mov) +sizeof(ret),
PROT_WRITE | PROT_EXEC,
MAP_ANON | MAP_PRIVATE, -1, 0);

memcpy(mem, mov, sizeof(mov));
memcpy(mem + sizeof(mov), ret, sizeof(ret));

int (*func)() = mem;

return func();
}

Any Program

Block of
Memory

Allocate

© 2018 NETRONOME

What is a JIT Compiler?

Ø How does a JIT
compiler really look
like? Here is a very
simple example.

9

int main(int argc, char *argv[]) {
// mov eax, 0
unsigned char mov[] = {0xb8, 0x00, 0x00, 0x00, 0x00};
// ret
unsigned char ret[] = {0xc3};

int num = atoi(argv[1]);
memcpy(&mov[1], &num, 4);

void *mem = mmap(NULL, sizeof(mov) +sizeof(ret),
PROT_WRITE | PROT_EXEC,
MAP_ANON | MAP_PRIVATE, -1, 0);

memcpy(mem, mov, sizeof(mov));
memcpy(mem + sizeof(mov), ret, sizeof(ret));

int (*func)() = mem;

return func();
}

Any Program

Block of
Memory

Write
Instruction

© 2018 NETRONOME

What is a JIT Compiler?

Ø How does a JIT
compiler really look
like? Here is a very
simple example.

10

int main(int argc, char *argv[]) {
// mov eax, 0
unsigned char mov[] = {0xb8, 0x00, 0x00, 0x00, 0x00};
// ret
unsigned char ret[] = {0xc3};

int num = atoi(argv[1]);
memcpy(&mov[1], &num, 4);

void *mem = mmap(NULL, sizeof(mov) +sizeof(ret),
PROT_WRITE | PROT_EXEC,
MAP_ANON | MAP_PRIVATE, -1, 0);

memcpy(mem, mov, sizeof(mov));
memcpy(mem + sizeof(mov), ret, sizeof(ret));

int (*func)() = mem;

return func();
}

Any Program

Block of
Memory

Write
Instruction

© 2018 NETRONOME

What is a JIT Compiler?

Ø How does a JIT
compiler really look
like? Here is a very
simple example.

11

int main(int argc, char *argv[]) {
// mov eax, 0
unsigned char mov[] = {0xb8, 0x00, 0x00, 0x00, 0x00};
// ret
unsigned char ret[] = {0xc3};

int num = atoi(argv[1]);
memcpy(&mov[1], &num, 4);

void *mem = mmap(NULL, sizeof(mov) +sizeof(ret),
PROT_WRITE | PROT_EXEC,
MAP_ANON | MAP_PRIVATE, -1, 0);

memcpy(mem, mov, sizeof(mov));
memcpy(mem + sizeof(mov), ret, sizeof(ret));

int (*func)() = mem;

return func();
}

Any Program

Block of
Memory

Jump &
Execute

© 2018 NETRONOME

What is a JIT Compiler - Summary

Ø Generate machine instructions at runtime, write them to executable memory and
execute them there directly

• No assembling stage, direct encoding generation

• No linking stage, direct absolute address generation

Ø Memory region allocated should be protected
• Very risky to leave it as both executable and writable

• Classic buffer overflow writing to stack could be seen as JIT compilation

Ø Runtime overhead
• Only JIT compiles hot code, trace compilation etc.

12

© 2018 NETRONOME

What is an eBPF JIT Compiler?

Ø The whole idea is to run user-supplied
programs inside kernel

Ø Why not kernel module .ko?
• C is permissive, pointer is exploitable

Ø What’s wrong with checking .ko?
• It is compiled already, different architectures are

different in ISA (instruction set architecture), we
will end up with a bunch of .ko verifiers doing
similar things and they can't be merged due to
ISA differences

Ø We want to check on unified representation. It was
BPF (Berkeley Packet Filter), now enhanced as
eBPF (Extended BPF)

13

Kernel Space

.ko Supposed
Resource

Shouldn’t access other resource

© 2018 NETRONOME

What is an eBPF JIT Compiler?

eBPF representation

Ø Designed to be set of instructions and are close to x86-64, AArch64 etc.

Ø 64-bit instruction encoding and 64-bit register with 32-bit sub-register

Ø Usual data manipulation instructions and control transfer instructions

Ø Support both interpretation execution and JIT execution
Ø KERNEL/Documentation/bpf/bpf_design_QA.rst

14

35: 57 02 00 00 3f ff 00 00 r2 &= 65343 (AND)
36: 55 02 c9 02 00 00 00 00 if r2 != 0 goto +713 (JMP)
37: 71 82 17 00 00 00 00 00 r2 = *(u8 *)(r8 + 23) (LOAD)
38: 7b 3a a8 ff 00 00 00 00 *(u64 *)(r10 - 88) = r3 (STORE)

© 2018 NETRONOME

What is an eBPF JIT Compiler?

eBPF software stack for JIT execution

Ø Compile C into eBPF sequence

Ø Check eBPF sequence

Ø JIT compile and execute the sequence

15

© 2018 NETRONOME

What is an eBPF JIT Compiler?

Ø Components in yellow are sitting inside kernel space

Ø Verifier needs to walk instructions, quite a few information are collected and
shared with architecture code generation back-ends

Ø They work closely, and form an eBPF JIT compiler as a whole

16

eBPF JIT Compiler

© 2018 NETRONOME

eBPF JIT Compiler - Verification Stage

Ø Control flow check

• No function call to an unknown function

• No fall through from one function to the next one

• No jump destination is out of range

• No unreachable instruction

• No loop

17

© 2018 NETRONOME

eBPF JIT Compiler - Verification Stage

Ø Individual instruction check based on static information

• Divide by zero

• Shifts with invalid shifting amount

• Invalid stack access (unaligned, out of range etc)

18

if ((opcode == BPF_LSH || opcode == BPF_RSH ||
opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {

int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
if (insn->imm < 0 || insn->imm >= size) {
verbose(env, "invalid shift %d\n", insn->imm);
return -EINVAL;

}
}

/* BPF program can access up to 512 bytes of stack space. */
#define MAX_BPF_STACK 512

if (off >= 0 || off < -MAX_BPF_STACK) {
verbose(env, "invalid stack off=%d size=%d\n", off, size);
return -EACCES;

}

© 2018 NETRONOME

eBPF JIT Compiler - Verification Stage

Ø Individual instruction check based on dynamic information

• Value range based checks. For example, out of range access to packet data

• Register status based checks. For example, read from uninitialized register

• Stack status based checks. For example, a corruption spilled pointer on stack

Ø These checks requires tracking data flow dynamically at an instruction level

19

*(u64 *)(r10, -8) = r1
/* mess up with R1 pointer on stack */
*(u8 *)(r10, -7) = 0x23
/* fill back into R0 should fail */
r0 = *(u64 *)(r10, -8)
exit

mov r0, r2
exit

© 2018 NETRONOME

eBPF JIT Compiler - Verification Stage

Ø Kernel space pointer leak checks under unprivileged mode

• Such information is highly useful to an attacker once leaked to userspace

• No pointer arithmetic and comparison

• No store back to user space accessible storage, like map, packet etc.

• https://lwn.net/Articles/660331/ https://lkml.org/lkml/2015/10/5/687

20

"unpriv: return pointer",
"unpriv: add const to pointer",
"unpriv: add pointer to pointer",
"unpriv: neg pointer",
"unpriv: cmp pointer with const",
"unpriv: cmp pointer with pointer",
"unpriv: check that printk is disallowed",
"unpriv: pass pointer to helper function",
"unpriv: indirectly pass pointer on stack to helper function",
"unpriv: mangle pointer on stack 1",
"unpriv: mangle pointer on stack 2",
"unpriv: read pointer from stack in small chunks",
"unpriv: write pointer into ctx",
"unpriv: spill/fill of ctx",

"unpriv: spill/fill of ctx 2",
"unpriv: spill/fill of ctx 3",
"unpriv: spill/fill of ctx 4",
"unpriv: spill/fill of different pointers stx",
"unpriv: spill/fill of different pointers ldx",
"unpriv: write pointer into map elem value",
"unpriv: partial copy of pointer",
"unpriv: pass pointer to tail_call",
"unpriv: cmp map pointer with zero",
"unpriv: write into frame pointer",
"unpriv: spill/fill frame pointer",
"unpriv: cmp of frame pointer",
"unpriv: adding of fp",
"unpriv: cmp of stack pointer",

© 2018 NETRONOME

eBPF JIT Compiler - Verification Stage

Ø Any list for all supported verifications?

• KERNEL/toos/testing/selftests/bpf/test_verifier.c is a good reference

• ~900 tests

• Tests are categorized to some extent using prefix, for example verifications related
with another major feature bpf-to-bpf function could be listed using

• “unpriv:”, “call:”, “XDP,” are interesting categories worth having a look

21

"calls: basic sanity",
"calls: not on unpriviledged",
"calls: div by 0 in subprog",
"calls: multiple ret types in subprog 1",
"calls: multiple ret types in subprog 2",
"calls: overlapping caller/callee",
…

cat tools/testing//selftestsbpf/test_verifier.c | grep "\"calls:"

© 2018 NETRONOME

Verification Stage - Algorithms

Ø Control flow checks

• Function partition

• Depth first walk to detect loop and unreachable instructions

Ø Data flow tracking

• All-code-paths walker to collect information instruction by instruction and path by path

22

© 2018 NETRONOME

Verification Stage - Algorithms

Ø Control flow checks

• Function partition

• Depth first walk to detect loop and unreachable instructions

Ø Data flow tracking

• All-code-paths walker to collect information instruction by instruction and path by path

• Code path prune for avoiding walking paths proven to be safe

23

© 2018 NETRONOME

Verification Stage - Algorithms

Ø Control flow checks

• Function partition

• Depth first walk to detect loop and unreachable instructions

Ø Data flow tracking

• All-code-paths walker to collect information instruction by instruction and path by path

• Code path prune for avoiding walking paths proven to be safe

• Path sensitive register liveness tracking to release more prune opportunities

24

© 2018 NETRONOME

Algorithm - Function Partition

Ø Input eBPF sequence is a sequence of functions

Ø Partition the sequence to make them explicit

25

op dst_reg src_reg off imm

call destination = insn_index + imm + 1

func 1 start = 2 + 5 + 1 = 8
func 2 start = 9 + 3 + 1 = 13

eBPF CALL instruction encoding

BPF_CALL

0: r3 += 1

1: if r0 < r1 goto +1

2: call +5

3: goto L2

4: r4 += 2

5: r4 += r3

6: r0 = r4

7: exit

8: r2 += r3

9: call +3

10: r4 += 2

11: r4 += r3

12: exit

13: r0 += 1

...

func 0

func 1

func 2

0: r3 += 1

1: if r0 < r1 goto +1

2: call +5

3: goto L2

4: r4 += 2

5: r4 += r3

6: r0 = r4

7: exit

8: r2 += r3

9: call +3

10: r4 += 2

11: r4 += r3

12: exit

13: r0 += 1

...

© 2018 NETRONOME

Algorithm - Depth First Walk

Ø Depth first walk is used to detect loop and unreachable instruction

26

0: r3 += 1

1: if r0 < r1 goto L1
2: r1 += r2
3: goto L2

L1:

4: r4 += r3

L2:

5: r0 = r4

6: exit

Two auxiliary array to help the walk:
insn_stack [MAX_INSN_NUM]
insn_status[MAX_INSN_NUM]

0: r3 += 1
1: if r0 < r1 goto L1

2: r1 += r2
3: goto L2

L2:
5: r0 = r4
6: exit

Branch not taken

0: r3 += 1
1: if r0 < r1 goto L1

L1:
4: r4 += r3

L2:
5: r0 = r4
6: exit

Branch taken

© 2018 NETRONOME

Algorithm - Depth First Walk

Ø Depth first walk is used to detect loop and unreachable instruction

27

0: r3 += 1

1: if r0 < r1 goto L1
2: r1 += r2
3: goto L2

L1:

4: r4 += r3

L2:

5: if r4 < 10 goto L1

6: exit

Two auxiliary array to help the walk:
insn_stack [MAX_INSN_NUM]
insn_status[MAX_INSN_NUM]

0: r3 += 1
1: if r0 < r1 goto L1

2: r1 += r2
3: goto L2

L2:
5: if r4 < 10 goto L1

Branch not taken Branch taken

0: r3 += 1
1: if r0 < r1 goto L1

L1:
4: r4 += r3

L2:
5: if r4 < 10 goto L1

6: exit L1:
4: r4 += r3

Back Edge

© 2018 NETRONOME

Algorithm - Depth First Walk

Ø Depth first walk is used to detect loop and unreachable instruction

28

0: r3 += 1

1: if r0 < r1 goto L1
2: r1 += r2
3: goto L2

L1:

4: r4 += r3

L2:

5: if r4 < 10 goto L1

6: exit

Two auxiliary array to help the walk:
insn_stack [MAX_INSN_NUM]
insn_status[MAX_INSN_NUM]

0: r3 += 1
1: if r0 < r1 goto L1

2: r1 += r2
3: goto L2

L2:
5: if r4 < 10 goto L1

Branch not taken Branch taken

0: r3 += 1
1: if r0 < r1 goto L1

L1:
4: r4 += r3

L2:
5: if r4 < 10 goto L1

6: exit L1:
4: r4 += r3

Back Edge

© 2018 NETRONOME

Algorithm - Code Path Walker

Ø Execute all code path

• Accurately knows program status (registers, memory etc.) at any point

• Track and propagate scalar value range, pointer types etc.

• Code path walker is time intensive

• Program will be rejected if it is too complex (BPF_COMPLEXITY_LIMIT_INSNS)

29

© 2018 NETRONOME

Algorithm - Code Path Walker

30

Input BPF sequence

r3 += 1
if r0 < r1 goto L1
r4 = *(u8 *)(r2 - 8)
goto L2
L1:
r4 += 2
L2:
r4 += r3
r0 = r4
exit

r3 += 1
if r0 < r1 goto L1
r4 = *(u8 *)(r2 - 8)
goto L2
L1:
r4 += 2
L2:
r4 += r3
r0 = r4
exit

Branch taken Branch not taken

collect ALU info

collect MEM info
collect JMP info

r3 += 1
if r0 < r1 goto L1
r4 = *(u8 *)(r2 - 8)
goto L2
L1:
r4 += 2
L2:
r4 += r3
r0 = r4
exit

© 2018 NETRONOME

Algorithm - Code Path Walker

31

Input BPF sequence

r3 += 1
if r0 < r1 goto L1
r4 = *(u8 *)(r2 - 8)
goto L2
L1:
r4 += 2
L2:
r4 += r3
r0 = r4
exit

r3 += 1
if r0 < r1 goto L1
r4 = *(u8 *)(r2 - 8)
goto L2
L1:
r4 += 2
L2:
r4 += r3
r0 = r4
exit

Branch taken Branch not taken

r3 += 1
if r0 < r1 goto L1
r4 = *(u8 *)(r2 - 8)
goto L2
L1:
r4 += 2
L2:
r4 += r3
r0 = r4
exit

This sub-sequence starting from L2 towards the exit is executed for both.
Can we avoid walking through it again?

© 2018 NETRONOME

Algorithm - Code Path Prune

Ø No need to walk the sequence again given we have SAFER status when reaching
the starting point of the sequence. Those points are where paths merged.

32

Branch taken Branch not taken

Path State A
(reg, mem)

Path State B
(reg, mem)

eq?
N, walk again

Y, skip the walk

r3 += 1
if r0 < r1 goto L1
r4 = *(u8 *)(r2 - 8)
goto L2
L1:
r4 += 2 ß A
L2:
r4 += r3
r0 = r4
exit

r3 += 1
if r0 < r1 goto L1
r4 = *(u8 *)(r2 - 8)
goto L2 ß B
L1:
r4 += 2
L2:
r4 += r3
r0 = r4
exit

© 2018 NETRONOME

Algorithm - Register Liveness Tracking

Ø The purpose of tracking register liveness is to make more path prune happen

33

Branch taken Branch not taken
r3 += 1
if r0 < r1 goto L1
r4 = *(u8 *)(r2 - 8)
goto L2
L1:
r4 += 2
L2:
r4 += r3
r0 = r4
r0 += 1
exit

r3 += 1
if r0 < r1 goto L1
r4 = *(u8 *)(r2 - 8)
goto L2
L1:
r4 += 2
L2:
r4 += r3
r0 = r4
r0 += 1
exit

0 < r0 < 10

0 < r0 < 20

eq?

It doesn’t matter when we have a
unsafe value in the code path, given
the value is NOT used in the to-be-

pruned path

ß A

ß B

© 2018 NETRONOME

Verification Stage - Challenges

Ø Complex program will require too much verification resources

Ø Use classic static flow analysis techniques might lower resource consuming and
making verifier more scalable, however would be challenging to guarantee the
same level of securities.

34

© 2018 NETRONOME

Code Gen Stage - Overview

Ø After eBPF sequence passed verification, Code Gen stage start which translates
eBPF into native machine instruction

Ø This is fairly straightforward as eBPF instructions could be one-to-one mapped to
native machine instruction on most modern architectures

Ø Architecture Code Gen back-ends, for example x86-64/AArch64 etc., typically
share the same Code Gen flow.

35

© 2018 NETRONOME

one to one insn map, aarch64 example:
case BPF_ALU | BPF_SUB | BPF_K:
case BPF_ALU64 | BPF_SUB | BPF_K:

emit_a64_mov_i(is64, tmp, imm, ctx);
emit(A64_SUB(is64, dst, dst, tmp), ctx);
break;

Code Gen Stage - General Flow

36

estimate JIT image size
(dry run)

allocate memory

build_prologue

build_body

build_epilogue

JIT image contains
native machine

instructions

prepare stack pointer, do callee-saved etc.

restore stack pointer/callee-saved etc.

arch/x86,arm64/net/bpf_jit_comp.c are quite self-explained

© 2018 NETRONOME

Code Gen Stage - Linking

Ø eBPF does not allow global variables and random function calls, no external symbol
access in general which save linking jobs

Ø eBPF does allow call to special runtime helper functions (map), helper address
needs fixup

• Function ID is encoded in “imm” field of eBPF call instruction

• ID needs to be mapped to address and call instruction should be relocated

37

case BPF_JMP | BPF_CALL:
{
switch (insn->imm) {

case BPF_FUNC_map_lookup_elem:
insn->imm =
BPF_CAST_CALL(ops->map_lookup_elem) - __bpf_call_base;

continue;
case BPF_FUNC_map_update_elem:
...

case BPF_JMP | BPF_CALL:
{
const u8 r0 = bpf2a64[BPF_REG_0];
const u64 func = (u64)__bpf_call_base + imm;

emit_a64_mov_i64(tmp, func, ctx);
emit(A64_BLR(tmp), ctx);

verifier perpare absoluate address back-end relocate call instruction

64-bit address is too long to encode, keep offset instead

© 2018 NETRONOME

Code Gen Stage - Linking for BPF-to-BPF Call

Ø bpf-to-bpf function call requires relocating function call address as well

Ø bpf-to-bpf function call requires JIT compile all eBPF functions first, then we know start
address for each function, and need a second round compilation to relocate all call
instructions.

Ø Architecture back-end doesn’t know function partition, Verifier drives the whole Code Gen

38

for (i = 0; i < func_cnt; i++)
arch_jit_hook_for_each_func

scan all insn, rewrite imm field of call insn to
callee_start_address - __bpf_call_base

// redo the JIT
for (i = 0; i < func_cnt; i++)
arch_jit_hook_for_each_func

© 2018 NETRONOME

Code Gen Stage - Summary

Ø Architecture Code Gen hooks do instruction mapping

Ø Verifier do linking and all other jobs which are generic for all architectures

Ø Verifier and architecture back-ends work closely to form the whole eBPF JIT
compiler

39

© 2018 NETRONOME

NFP Code Gen Back-end - NFP Introduction

Ø Netronome Agilio® SmartNIC contains a powerful Network Flow Processor (NFP)

Ø eBPF aims to offer programmability to kernel network stack

Ø NFP and eBPF matches each other, perfect to offload eBPF to NFP, yes we can!

Ø NFP Code Gen back-end translates eBPF instructions into NFP instructions, write
them to Agilio SmartNIC, and run them there on the fly

Ø In terms of the JIT compiler Code Gen, instruction set architecture is the most
relevant part, so we will focus on this in the following slides

Ø NFP itself is a very powerful chip which offers many other capabilities, please see
our website (Document Library) for details

40

© 2018 NETRONOME

NFP Instruction Set Architecture (ISA)

Ø 32 x 32-bit general purpose registers for each eBPF context

Ø 8K instructions for each eBPF context

Ø Rich arithmetic and logic instructions

Ø Powerful memory unit allowing unaligned access and bulk access

Ø Global absolute jump within the whole instruction buffer

Ø Clustered register sets offers generous registers other than general purpose
registers

41

© 2018 NETRONOME

NFP Code Gen Back-end - Overview

Ø Generally works the same way as the other eBPF arch back-ends.

• Have verified eBPF sequence as input

• Allocate JIT image on Agilio SmartNIC

• One to one map eBPF instruction, and writes to JIT image

Ø However, there are some differences:

• NFP has a unique and powerful memory unit which needs special support

• NFP has other registers besides general purpose registers, need to utilize them

• NFP has 32-bit general purpose register instead of 64-bit

• NFP wants to do all linking jobs by itself

42

© 2018 NETRONOME

NFP Code Gen Back-end - Overview

Ø Differences (continued):

• More strict verification

• Maps are now located on SmartNIC, need to redirect all map access. Call firmware
functions and get results. Extra Code Gen about function call and a couple of
instruction relocation.

43

eBPF NFP

r3 += 1
if r0 < r1 goto L1
r4 = *(u8 *)(r2 - 8)
goto L2

alu[*l$index0[2], --, B, gprB_5]
immed[gprA_4, 0x99], gpr_wrboth
ld_field[*l$index0, 1000, gprB_4, <<24]
alu[gprA_6, gprA_6, +, 0xc], gpr_wrboth

© 2018 NETRONOME

NFP Code Gen Back-end - Memory Support

Ø Memcpy Optimization

• Classic RISC arch use load/store model, can only access register width at maximum
per instruction

• NFP has special internal bus allows bulk memory access and could access 128 bytes
at maximum per instruction

• eBPF ISA follows RISC load/store model, memcpy function are expanded into
load/store pair by LLVM compiler due to inline memcpy for small copy size is common
techniques and eBPF does not allow call external function

• This is not good for NFP, or actually might be not good for other architectures. It is
better to let the architecture back-ends decide how to expand memcpy

44

© 2018 NETRONOME

NFP Code Gen Back-end - Memory Support

Ø Memcpy Optimization

45

C source eBPF sequence reconstructed semantics

mem[read32_swap, $xfer_0, gprA_2, 0xc, 7]
alu[$xfer_0, --, B, $xfer_0]
...
mem[write32_swap, $xfer_0, gprA_5, 0xc, 7]

NFP memory bulk access

LLVM NFP JIT Compiler

NFP JIT Compiler

void
cal_align4(int *a, int *b)
{
memcpy(a, b, 32);

}

cal_align4:

r3 = *(u32 *)(r2 + 28)
*(u32 *)(r1 + 28) = r3
r3 = *(u32 *)(r2 + 24)
*(u32 *)(r1 + 24) = r3
r3 = *(u32 *)(r2 + 20)
*(u32 *)(r1 + 20) = r3
r3 = *(u32 *)(r2 + 16)
*(u32 *)(r1 + 16) = r3
r3 = *(u32 *)(r2 + 12)
*(u32 *)(r1 + 12) = r3
r3 = *(u32 *)(r2 + 8)
*(u32 *)(r1 + 8) = r3
r3 = *(u32 *)(r2 + 4)
*(u32 *)(r1 + 4) = r3
r3 = *(u32 *)(r2 + 0)
*(u32 *)(r1 + 0) = r3

void
cal_align4(int *a, int *b)
{
memcpy(a, b, 32);

}

© 2018 NETRONOME

NFP Code Gen Back-end - Memory Support

46

eBPF sequence another sequence

cal_align4:

r3 = *(u32 *)(r2 + 28)
*(u32 *)(r1 + 28) = r3
r3 = *(u32 *)(r2 + 24)
*(u32 *)(r1 + 24) = r3
r3 = *(u32 *)(r2 + 16)
*(u32 *)(r1 + 16) = r3
r3 = *(u32 *)(r2 + 12)
*(u32 *)(r1 + 12) = r3
r3 = *(u32 *)(r2 + 20)
*(u32 *)(r1 + 20) = r3
r3 = *(u32 *)(r2 + 4)
*(u32 *)(r1 + 4) = r3
r3 = *(u32 *)(r2 + 0)
*(u32 *)(r1 + 0) = r3
r3 = *(u32 *)(r2 + 8)
*(u32 *)(r1 + 8) = r3

Instruciton Scheduling

Instruction schduling done by compiler will make it
hard for eBPF JIT compilers to reconstruct memcpy
semantics, Netronome contributed new LLVM option

llc -bpf-expand-memcpy-in-order

to force LLVM generating unscheduled memcpy
sequence.

Ø Memcpy Optimization

cal_align4:

r3 = *(u32 *)(r2 + 28)
*(u32 *)(r1 + 28) = r3
r3 = *(u32 *)(r2 + 24)
*(u32 *)(r1 + 24) = r3
r3 = *(u32 *)(r2 + 20)
*(u32 *)(r1 + 20) = r3
r3 = *(u32 *)(r2 + 16)
*(u32 *)(r1 + 16) = r3
r3 = *(u32 *)(r2 + 12)
*(u32 *)(r1 + 12) = r3
r3 = *(u32 *)(r2 + 8)
*(u32 *)(r1 + 8) = r3
r3 = *(u32 *)(r2 + 4)
*(u32 *)(r1 + 4) = r3
r3 = *(u32 *)(r2 + 0)
*(u32 *)(r1 + 0) = r3

© 2018 NETRONOME

NFP Code Gen Back-end - Memory Support

47

eBPF sequence another sequence

cal_align4:

r3 = *(u32 *)(r2 + 28)
*(u32 *)(r1 + 28) = r3
r3 = *(u32 *)(r2 + 24)
*(u32 *)(r1 + 24) = r3
r3 = *(u32 *)(r2 + 16)
*(u32 *)(r1 + 16) = r3
r3 = *(u32 *)(r2 + 12)
*(u32 *)(r1 + 12) = r3
r3 = *(u32 *)(r2 + 20)
*(u32 *)(r1 + 20) = r3
r3 = *(u32 *)(r2 + 4)
*(u32 *)(r1 + 4) = r3
r3 = *(u32 *)(r2 + 0)
*(u32 *)(r1 + 0) = r3
r3 = *(u32 *)(r2 + 8)
*(u32 *)(r1 + 8) = r3

Instruciton Scheduling

Instruction schduling done by compiler will make it
hard for eBPF JIT compilers to reconstruct memcpy
semantics, Netronome contributed new LLVM option

llc -bpf-expand-memcpy-in-order

to force LLVM generating unscheduled memcpy
sequence

Ø Memcpy Optimization

cal_align4:

r3 = *(u32 *)(r2 + 28)
*(u32 *)(r1 + 28) = r3
r3 = *(u32 *)(r2 + 24)
*(u32 *)(r1 + 24) = r3
r3 = *(u32 *)(r2 + 20)
*(u32 *)(r1 + 20) = r3
r3 = *(u32 *)(r2 + 16)
*(u32 *)(r1 + 16) = r3
r3 = *(u32 *)(r2 + 12)
*(u32 *)(r1 + 12) = r3
r3 = *(u32 *)(r2 + 8)
*(u32 *)(r1 + 8) = r3
r3 = *(u32 *)(r2 + 4)
*(u32 *)(r1 + 4) = r3
r3 = *(u32 *)(r2 + 0)
*(u32 *)(r1 + 0) = r3

No guarantee r3 is dead after this instruction
Make sure r3 has the same value as old sequence

© 2018 NETRONOME

NFP Code Gen Back-end - Memory Support

48

What's this?

Ø Memcpy Optimization

mem[read32_swap, $xfer_0, gprA_2, 0xc, 7]
alu[$xfer_0, --, B, $xfer_0]
...
mem[write32_swap, $xfer_0, gprA_5, 0xc, 7]

NFP memory bulk access

© 2018 NETRONOME

NFP Code Gen Back-end - Memory Support

49

Ø Memcpy Optimization

mem[read32_swap, $xfer_0, gprA_2, 0xc, 7]
alu[$xfer_0, --, B, $xfer_0]
...
mem[write32_swap, $xfer_0, gprA_5, 0xc, 7]

NFP memory bulk access

NFP has clustered register sets and have other registers other than
general purpose registers

Memory read are into transfer in registers first, then moved to
general purpose registers. The content is not clobbered if there is no
other memory read

NFP eBPF JIT Compiler can use 32 transfer in registers, meaning
could cache 128 bytes memory contents there

Packet data is frequently visited, so we use transfer in registers
to cache packet data.

gpr0

gpr1

gpr2

gpr3

...

tr_in0

tr_in1

tr_in2

tr_in0

...

tr_out0

tr_out1

tr_out2

tr_out0

...

memory

© 2018 NETRONOME

NFP Code Gen Back-end - Memory Support

50

Ø Memcpy Optimization

mem[read32_swap, $xfer_0, gprA_2, 0xc, 7]
alu[$xfer_0, --, B, $xfer_0]
...
mem[write32_swap, $xfer_0, gprA_5, 0xc, 7]

NFP memory bulk access

Read reasonable size from memory into transfer in register
during the first memory read

gpr0

gpr1

gpr2

gpr3

...

tr_in0

tr_in1

tr_in2

tr_in0

...

tr_out0

tr_out1

tr_out2

tr_out0

...

memory

© 2018 NETRONOME

NFP Code Gen Back-end - Memory Support

51

Ø Memcpy Optimization

mem[read32_swap, $xfer_0, gprA_2, 0xc, 7]
alu[$xfer_0, --, B, $xfer_0]
...
mem[write32_swap, $xfer_0, gprA_5, 0xc, 7]

NFP memory bulk access

The follow up memory read use cache in transfer in register
directly, no need of memory read

gpr0

gpr1

gpr2

gpr3

...

tr_in0

tr_in1

tr_in2

tr_in0

...

tr_out0

tr_out1

tr_out2

tr_out0

...

memory

© 2018 NETRONOME

NFP Code Gen Back-end - 32-bit Optimization

Ø eBPF ISA defined 32-bit sub-register and associated instructions

• eBPF register is 64-bit, the lower half could be used as 32-bit sub-register

• Any write to the lower half must zero the higher half. This is to match x86-64 and
AArch64 ISA feature

• A set of ALU32 instructions will operate on 32-bit sub-register

52

program operating on 32-bit type default eBPF code gen from LLVM JITed AArch64 sequence

void cal(unsigned int *a,
unsigned int *b,
unsigned int *c)

{
unsigned int sum = *a + *b;

*c = sum;
}

cal:
ld4u r1, [r1, 0]
ld4u r2, [r2, 0]
addu r2, r2, r1
st4 [r3, 0], r2
ret

cal:
r1 = *(u32 *)(r1 + 0)
r2 = *(u32 *)(r2 + 0)
r2 += r1
*(u32 *)(r3 + 0) = r2
exit

© 2018 NETRONOME

NFP Code Gen Back-end - 32-bit Optimization

Ø 32-bit optimization

• NFP (or ARM etc.) has 32-bit register, must use register pair to model eBPF register

• NFP data manipulation instructions operates on 32-bit data. Operating on register pair
needs two instructions

53

program operating on 32-bit type default eBPF code gen from LLVM JITed NFP sequence (pseudo code)

void cal(unsigned int *a,
unsigned int *b,
unsigned int *c)

{
unsigned int sum = *a + *b;

*c = sum;
}

cal:
ld4 r2, [r2, 0]
mov r3, 0
ld4 r4, [r4, 0]
mov r5, 0
add r4, r4, r2
addc r5, r5, r3
st4 [r6, 0], r4
ret

cal:
r1 = *(u32 *)(r1 + 0)
r2 = *(u32 *)(r2 + 0)
r2 += r1
*(u32 *)(r3 + 0) = r2
exit

extra instructions to zero high half
extra instruction to operate on high half

Are they really necessary?

© 2018 NETRONOME

NFP Code Gen Back-end - 32-bit Optimization

Ø 32-bit optimization - Solution 1

• 32-bit sub-register and ALU32 instructions carries semantics, safe to generate native
instructions operating on sub-register only

• Netronome has contributed 32-bit sub-register and ALU32 enablement to LLVM

54

program operating on 32-bit type -mattr=+alu32 code gen from LLVM JITed NFP sequence (pseudo code)

void cal(unsigned int *a,
unsigned int *b,
unsigned int *c)

{
unsigned int sum = *a + *b;

*c = sum;
}

cal:
ld4 r2, [r2, 0]
ld4 r4, [r4, 0]
add r4, r4, r2
st4 [r6, 0], r4
ret

cal:
w1 = *(u32 *)(r1 + 0)
w2 = *(u32 *)(r2 + 0)
w2 += w1
*(u32 *)(r3 + 0) = w2
exit

(previous 64-bit code gen)
cal:
r1 = *(u32 *)(r1 + 0)
r2 = *(u32 *)(r2 + 0)
r2 += r1
*(u32 *)(r3 + 0) = r2
exit

© 2018 NETRONOME

NFP Code Gen Back-end - 32-bit Optimization

Ø Can we rely on semantics from registers and instructions? NO

• eBPF sequence can come from manual written assembly which doesn't conform to such
semantics

• LLVM could set ELF flags to tell the consumer the sequence is from LLVM therefore must
conform to the semantics. But ELF flag could be faked even though we don't know
whether a faked 32-bit flag is making the program easier or harder to exploit

• Also for some instructions, operations on high half can’t be safely omitted without
accurate usage information

55

© 2018 NETRONOME

default eBPF code gen from LLVM

NFP Code Gen Back-end - 32-bit Optimization

Ø 32-bit optimization - Solution 2

• JIT compiler figures out data flow from scratch, no rely on external information.

• Netronome has done initial support on this. Define-Use chain will be built for input
eBPF sequence, a series of analysis could be done along the chain.

56

r1 r1

r2 r2

r2 r2

r3r2

r0

r1

define use0 use1

r1 = *(u32 *)(r1 + 0)

r2 = *(u32 *)(r2 + 0)

r2 += r1

*(u32 *)(r3 + 0) = r2

exit

© 2018 NETRONOME

default eBPF code gen from LLVM

NFP Code Gen Back-end - 32-bit Optimization

Ø 32-bit optimization - Solution 2

• JIT compiler figures out data flow from scratch, no rely on external information.

• Netronome has done initial support on this. Define-Use chain will be built for input
eBPF sequence, a series of analysis could be done along the chain.

57

r1 r1

r2 r2

r2 r2

r3r2

r0

r1

define use0 use1

r1 = *(u32 *)(r1 + 0)

r2 = *(u32 *)(r2 + 0)

r2 += r1

*(u32 *)(r3 + 0) = r2

exit
seed information
then backward propagate

© 2018 NETRONOME

default eBPF code gen from LLVM

NFP Code Gen Back-end - 32-bit Optimization

Ø 32-bit optimization - Solution 2

• JIT compiler figures out data flow from scratch, no rely on external information.

• Netronome has done initial support on this. Define-Use chain will be built for input
eBPF sequence, a series of analysis could be done along the chain.

58

r1 r1

r2 r2

r2 r2

r3r2

r0

r1

define use0 use1

r1 = *(u32 *)(r1 + 0)

r2 = *(u32 *)(r2 + 0)

r2 += r1

*(u32 *)(r3 + 0) = r2

exit

© 2018 NETRONOME

default eBPF code gen from LLVM

NFP Code Gen Back-end - 32-bit Optimization

Ø 32-bit optimization - Solution 2

• JIT compiler figures out data flow from scratch, no rely on external information.

• Netronome has done initial support on this. Define-Use chain will be built for input
eBPF sequence, a series of analysis could be done along the chain.

59

r1 r1

r2 r2

r2 r2

r3r2

r0

r1

define use0 use1

r1 = *(u32 *)(r1 + 0)

r2 = *(u32 *)(r2 + 0)

r2 += r1

*(u32 *)(r3 + 0) = r2

exit

© 2018 NETRONOME

NFP Code Gen Back-end - Summary

Ø Share the same flow with other host back-ends

Ø Has special optimization for NFP architecture features

Ø Targets offload execution environment

60

© 2018 NETRONOME

eBPF JIT Compiler - Emerging Features

Ø Verification Stage

• Strong requirement of a more scalable verification analysis infrastructure

• Support bounded loops. Netronome had some proof of concept work with community
to bring modern Control Flow Graph (CFG) infrastructure to eBPF verifier, then we
could build a bounded loop detector on top of it

Ø Programming Model

• Shared library support (dynamic/runtime linking)

Ø Debuggability

• Debug JITed image through DWARF annotations. Debug information could be saved
separately from executable image

61

© 2018 NETRONOME

jiong.wang@netronome.com

Thank You!

62

