
1 ©2017 Open-NFP

Feature Rich Flow Monitoring with
P4

John Sonchack
University of Pennsylvania

2 ©2017 Open-NFP

Outline

▪  Introduction: Flow Records
▪ Design and Implementation: P4 Accelerated Flow Record Generation
▪  Benchmarks and Optimizations

3 ©2017 Open-NFP

Outline

▪  Introduction: Flow Records
▪ Design and Implementation: P4 Accelerated Flow Record Generation
▪  Benchmarks and Optimizations

4 ©2017 Open-NFP

Introduction: Flow Records

▪  A flow record summarizes
groups of packets in the same
TCP / UDP stream

Flow key
(IP 5-tuple)

Flow features
(statistics and
meta-data)

5 ©2017 Open-NFP

Introduction: Flow Record Applications

▪  Flow records are input to analysis
applications

▪  Examples:
•  Security: Detect botnets, intrusions,

DoS attacks, port scans
•  Traffic management: Traffic

classification, QoS routing, flow
scheduling, load balancing

•  Debugging: Performance monitoring,
loop and black hole detection

•  More:
–  “A survey of network flow

applications” B. Li, et al.
–  “An overview of ip flow-based

intrusion detection” A.Sperotto, et al.
–  NetFlow/IPFIX applications

Flow records

Information

Reconfiguration

6 ©2017 Open-NFP

Introduction: Flow Record Benefits

▪  Flow records reduce monitoring costs

▪  Important for high coverage monitoring
•  visibility into many (or all) links
•  costs add up

Packet Headers Flow Records
Volume 2GB per second 1.38MB per second

Rate 328k per second 8.9k per second
Table	source:	1	hour	10	Gbit/s	core	router	trace		(CAIDA 02/2015 Chicago dir. A	h5ps://www.caida.org/data/passive/
trace_stats/)	

Flow records

Information

Reconfiguration

7 ©2017 Open-NFP

Introduction: Flow Record Richness

▪  An important quality of flow records
is their information richness:

Accuracy: Account for
every packet and flow
on monitored links

Feature richness:
provide the features
that applications use

8 ©2017 Open-NFP

Introduction: Flow Record Generation

▪  The problem: current approaches trade overhead for information richness

So#ware	Genera+on	 Sampling	Switches	 Dedicated	ASICs	

+	Informa+on	rich	
-	High	overhead	

-	Reduces	accuracy	
+Low	overhead	

-	Limited	feature	set	
+Low	overhead	

Flow records
Sampled flow records Fixed flow records

9 ©2017 Open-NFP

Introduction: our Goal

▪  Flow record generation that is efficient, accurate, and feature rich

+	Informa+on	rich	
+	Low	overhead	

This	work:	so#ware	genera+on	+	P4	hardware	accelera+on	So#ware	generators	

+	Informa+on	rich	
-	High	overhead	

Flow records
Flow records

+		

10 ©2017 Open-NFP

Outline

▪  Introduction: Flow Records
▪ Design and Implementation: P4 Accelerated Flow Record

Generation
▪  Benchmarks and Optimizations

11 ©2017 Open-NFP

Packets

Flow
Records

Flow
Records

Microflow
Records

Packets

P4 Accelerated Flow Record Generation
▪  Main Idea: Use P4 hardware to preprocess packets into

micro flow records that summarize per-flow packet bursts

Total	work:	
map	8	

packets	to	3	
flow	records	

Total	work:	
map	4	micro	

flow	records	to	
3	flow	records	

•  Informa+on	rich	
•  features	are	fully	

customizable	
•  Efficient	

•  P4	hardware	
reduces	CPU	
workload		

So#ware	
flow	record	genera+on	

P4	accelerated		
flow	record	genera+on	

12 ©2017 Open-NFP

First attempt: CPU Managed Tables

Packets
Flow Record
Generator.P4

Insert

Update

Key Pkt Ct.

1

1
2

FlowGenerator_controller.c

RemoveInsert

CPU

Flow Records

P4 Hardware Forwarding Table

13 ©2017 Open-NFP

Packets
Flow Record
Generator.P4

Insert

Update

Key Pkt Ct.

1

1
2

FlowGenerator_controller.c

RemoveInsert

CPU

Flow Records

P4 Hardware Forwarding Table

First attempt: CPU Managed Tables

▪  Bottleneck: table update operations
▪  P4 designed for forwarding tables that are not highly dynamic

Not	
Line	
Rate!	

Flow	arrival	rate:	~50k	flows	
per	sec.	(10	Gbit/s	Internet	link)	

Controller	rule	update	rate:	
~200	–	5k	per	second	(hw	dep.)	

14 ©2017 Open-NFP

A Better Design: Minimal CPU Interaction
1.  Use a flat array, i.e., P4 register, indexed by hash to store records.

Packets

MicroFlowGenerator.P4

MicroFlowAggregator.c

P4 Hardware

CPU
Flow Records

Pkt Ct.
8

Hash

Key
1.1.1.1—>…

52.2.2.2—>…

15 ©2017 Open-NFP

A Better Design: Minimal CPU Interaction
1.  Use a flat array, i.e., P4 register, indexed by hash to store records.

Packets

MicroFlowGenerator.P4

MicroFlowAggregator.c

P4 Hardware

CPU
Flow Records

Pkt Ct.
8

Hash

Key
1.1.1.1—>…

52.2.2.2—>…

16 ©2017 Open-NFP

1.  Use a flat array, i.e., P4 register, indexed by hash to store records.

Packets

MicroFlowGenerator.P4

MicroFlowAggregator.c

P4 Hardware

CPU
Flow Records

Pkt Ct.
8

Hash

Key
1.1.1.1—>…

52.2.2.2—>…

A Better Design: Minimal CPU Interaction

17 ©2017 Open-NFP

1.  Use a flat array, i.e., P4 register, indexed by hash to store records.

Packets

MicroFlowGenerator.P4

MicroFlowAggregator.c

P4 Hardware

CPU
Flow Records

Pkt Ct.
9

Hash

Key
1.1.1.1—>…

52.2.2.2—>…

A Better Design: Minimal CPU Interaction

18 ©2017 Open-NFP

1.  Use a flat array, i.e., P4 register, indexed by hash to store records.

Packets

MicroFlowGenerator.P4

MicroFlowAggregator.c

P4 Hardware

CPU
Flow Records

Pkt Ct.
11

Hash

Key
1.1.1.1—>…

72.2.2.2—>…

A Better Design: Minimal CPU Interaction

19 ©2017 Open-NFP

1.  Use a flat array, i.e., P4 register, indexed by hash to store records.

Packets

MicroFlowGenerator.P4

MicroFlowAggregator.c

P4 Hardware

CPU
Flow Records

Pkt Ct.
11

Hash

Key
1.1.1.1—>…

72.2.2.2—>…

Collision	

A Better Design: Minimal CPU Interaction

20 ©2017 Open-NFP

1.  Use a flat array, i.e., P4 register, indexed by hash to store records.
2.  Evict to CPU on collision.

Packets

MicroFlowGenerator.P4

MicroFlowAggregator.c

P4 Hardware

CPU
Flow Records

Pkt Ct.
11

Hash

Key
1.1.1.1—>…

13.3.3.3—>…

Insert

Normal Hash Table

72.2.2.2—>…

Collision	

A Better Design: Minimal CPU Interaction

21 ©2017 Open-NFP

1.  Use a flat array, i.e., P4 register, indexed by hash to store records.
2.  Evict to CPU on collision.

Packets

MicroFlowGenerator.P4

MicroFlowAggregator.c

P4 Hardware

CPU
Flow Records

Pkt Ct.
11

Hash

Key
1.1.1.1—>…

13.3.3.3—>…

Insert

Normal Hash Table

72.2.2.2—>…

Timeout

A Better Design: Minimal CPU Interaction

22 ©2017 Open-NFP

A Simple Implementation

23 ©2017 Open-NFP

Packets

Flow
Records

Flow
Records

Microflow
Records

Packets

P4 Accelerated Flow Record Generation
▪  Main Idea: Use P4 hardware to preprocess packets into

micro flow records that summarize per-flow packet bursts

Total	work:	
map	8	

packets	to	3	
flow	records	

Total	work:	
map	4	micro	

flow	records	to	
3	flow	records	

•  Informa+on	rich	
•  features	are	fully	

customizable	
•  Efficient	

•  P4	HW	reduces	
cpu	workload		

Commodity	server		
flow	record	genera+on	

P4	accelerated		
flow	record	genera+on	

24 ©2017 Open-NFP

Outline

▪  Introduction: Flow Records
▪ Design and Implementation: P4 Accelerated Flow Record Generation
▪ Benchmarks and Optimizations

25 ©2017 Open-NFP

Benchmarks and Optimizations
1.  How much does the P4 hardware reduce CPU workload?
2.  What is the maximum throughput of the P4 component?
3.  How can we optimize for the NFP-4000?

26 ©2017 Open-NFP

Benchmarks and Optimizations
1.  How much does the P4 hardware reduce CPU workload?
2.  What is the maximum throughput of the P4 component?
3.  How can we optimize for the NFP-4000?

27 ©2017 Open-NFP

Benchmarks and Optimizations
1.  How much does the P4 hardware reduce CPU workload?

Workload:	1	hour	10	Gbit/s	core	router	trace		(CAIDA 02/2015
Chicago dir. A	h5ps://www.caida.org/data/passive/trace_stats/)	

Each	microflow	represents	
~10	packets,	on	average	

28 ©2017 Open-NFP

Benchmarks and Optimizations
1.  How much does the P4 hardware reduce CPU workload?

Workload:	1	hour	10	Gbit/s	core	router	trace		(CAIDA 02/2015
Chicago dir. A	h5ps://www.caida.org/data/passive/trace_stats/)	

Each	microflow	represents	
~10	packets,	on	average	

Stasc	 Packets	aggrega+on	 Microflow	aggrega+on	

Avg.	rate	for	10	Gbit/s	
link	

~500k	 ~50k	

CPU	aggregator	
throughput	(per	core)	

~600k	 ~600k	

total	CPU	monitoring	
capacity	(per	core)	

~1	x10	Gbit/s	link	 ~10	x	10	Gbit/s	links	

Packets

Flow
Records

Flow
Records

Microflow
Records

Packets

29 ©2017 Open-NFP

Benchmarks and Optimizations
1.  How much does the P4 hardware reduce CPU workload?

(~10x with 1 MB of P4 HW memory)
2.  What is the maximum throughput of the P4 component?
3.  How can we optimize it for the NFP-4000?

30 ©2017 Open-NFP

Benchmarks and Optimizations
1.  How much does the P4 hardware reduce CPU workload?

(~10x with 1 MB of P4 HW memory)
2.  What is the maximum throughput of the P4 component?

31 ©2017 Open-NFP

Benchmarks and Optimizations
1.  How much does the P4 hardware reduce CPU workload?

(~10x with 1 MB of P4 HW memory)
2.  What is the maximum throughput of the P4 component?

packet	size	 bit	rate	@	10M	
pkts/sec	

64	 ~	5	Gbit/s	

128	 ~	10	Gbit/s	

256	 ~	20	Gbit/s	

512	 ~	40	Gbit/s	

1024	 ~	80	Gbit/s	

Average	packet	sizes	on	
10	Gbit/s	internet	
router	links	(caida)	

32 ©2017 Open-NFP

Benchmarks and Optimizations
1.  How much does the P4 hardware reduce CPU workload?

(~10x with 1 MB of P4 HW memory)
2.  What is the maximum throughput of the P4 component?

(~40-80 Gbit/s with average size packets)

packet	size	 bit	rate	@	10M	
pkts/sec	

64	 ~	5	Gbit/s	

128	 ~	10	Gbit/s	

256	 ~	20	Gbit/s	

512	 ~	40	Gbit/s	

1024	 ~	80	Gbit/s	

Average	packet	sizes	on	
10	Gbit/s	internet	
router	links	(caida)	

33 ©2017 Open-NFP

Benchmarks and Optimizations
1.  How much does the P4 hardware reduce CPU workload?

(~10x with 1 MB of P4 HW memory)
2.  What is the maximum throughput of the P4 component?

(~40-80 Gbit/s with average size packets)
3.  How can we optimize for the NFP-4000?

34 ©2017 Open-NFP

Benchmarks and Optimizations
1.  How much does the P4 hardware reduce CPU workload?

(~10x with 1 MB of P4 HW memory)
2.  What is the maximum throughput of the P4 component?

(~40-80 Gbit/s with average size packets)
3.  How can we optimize for the NFP-4000?

Op[miza[on	1:	finer	
grained	semaphores	

35 ©2017 Open-NFP

Benchmarks and Optimizations
1.  How much does the P4 hardware reduce CPU workload?

(~10x with 1 MB of P4 HW memory)
2.  What is the maximum throughput of the P4 component?

(~40-80 Gbit/s with average size packets)
3.  How can we optimize for the NFP-4000?

Op[miza[on	1:	finer	
grained	semaphores	

36 ©2017 Open-NFP

Core
1

Core
2

Pkt Ct.Key

53.3.3.3—>…

packet.key = 4.4.4.4 —> …
packet.hash = 3

1: read key @ 3

packet.key = 3.3.3.3 —> …
packet.hash = 3

2: read key @ 3

3: replace 3

4: update 3

Optimization 1: Fine Grained P4 Semaphores

Q: Are there race conditions?

37 ©2017 Open-NFP

Core
1

Core
2

Pkt Ct.Key

53.3.3.3—>…

packet.key = 4.4.4.4 —> …
packet.hash = 3

1: read key @ 3

packet.key = 3.3.3.3 —> …
packet.hash = 3

2: read key @ 3

3: replace 3

4: update 3

Optimization 1: Fine Grained P4 Semaphores

Incorrect!	

Q: Are there race conditions?
A: Yes.

38 ©2017 Open-NFP

Optimization 1: Fine Grained P4 Semaphores

Core
1

Core
2

Pkt Ct.Key

53.3.3.3—>…

packet.key = 4.4.4.4 —> …
packet.hash = 3

1: read key @ 3

packet.key = 3.3.3.3 —> …
packet.hash = 3

3: read key @ 3

2: replace 3

4: replace 3

WAIT

Q: Are there race conditions?
A: Yes.

39 ©2017 Open-NFP

Optimization 1: Fine Grained P4 Semaphores

Core
1

Core
2

Pkt Ct.Key

53.3.3.3—>…

packet.key = 4.4.4.4 —> …
packet.hash = 3

1: read key @ 3

packet.key = 3.3.3.3 —> …
packet.hash = 3

3: read key @ 3

2: replace 3

4: replace 3

WAIT

40 ©2017 Open-NFP

Optimization 1: Fine Grained P4 Semaphores

Core
1

Core
2

Pkt Ct.Key

53.3.3.3—>…

1: read key @ 3

2: replace 3
WAIT

Core
3

WAIT

Core
N

WAIT

…

41 ©2017 Open-NFP

Optimization 1: Fine Grained P4 Semaphores

lock/unlock	by	
calling	a	P4	ac[on.	

Lock	a	single	entry,	
not	the	en[re	array.	

42 ©2017 Open-NFP

Benchmarks and Optimizations
1.  How much does the P4 hardware reduce CPU workload?

(~10x with 1 MB of P4 HW memory)
2.  What is the maximum throughput of the P4 component?

(~40-80 Gbit/s with average size packets)
3.  How can we optimize for the NFP-4000?

1.  Fine grained P4 semaphores

Op[miza[on	2:	
combining	tables	

43 ©2017 Open-NFP

Optimization 2: Combining Tables

Version	 Cycles	/	
packet	

Improvement	

Baseline	 5084	 -	

44 ©2017 Open-NFP

Optimization 2: Combining Tables

Version	 Cycles	/	
packet	

Improvement	

Baseline	 5084	 -	

compute	hash	and	
get	key	merged	

4191	 18%	

45 ©2017 Open-NFP

Optimization 2: Combining Tables

Version	 Cycles	/	
packet	

Improvement	

Baseline	 5084	 -	

compute	hash	and	
get	key	merged	

4191	 18%	

Changing	tables	is	as	
expensive	as	~5	emem	ops	
(register_reads/writes).	

46 ©2017 Open-NFP

Optimization 2: Combining Tables

Can	we	merge	all	the	
tables?	Challenge:	

branches.	

47 ©2017 Open-NFP

Optimization 2: Combining Tables

In	C,	we	could	use	
condi[onal	
assignments.	

Can	we	merge	all	the	
tables?	Challenge:	

branches.	

48 ©2017 Open-NFP

Optimization 2: Combining Tables

In	P4,	we	can	use	a	
condiAonal	mask.	

Can	we	merge	all	the	
tables?	Challenge:	

branches.	

hdp://homolog.us/blogs/blog/2014/12/04/the-en[re-world-of-bit-twiddling-hacks/	

Encode	as	modify_field	
+	register_write	in	P4.	

49 ©2017 Open-NFP

Optimization 2: Combining Tables

hdp://homolog.us/blogs/blog/2014/12/04/the-en[re-world-of-bit-twiddling-hacks/	

Version	 Cycles	/	
packet	

Improvement	

Baseline	 5084	 -	

compute	hash	and	
get	key	merged	

4191	 18%	

single	table	 2915	 42%	

End	result:	~20-30%	
beder	throughput.	

50 ©2017 Open-NFP

Benchmarks and Optimizations
1.  How much does the P4 hardware reduce CPU workload?

(~10x with 1 MB of P4 HW memory)
2.  What is the maximum throughput of the P4 component?

(~40-80 Gbit/s with average size packets)
3.  How can we optimize for the NFP-4000?

1.  Fine grained P4 semaphores
2.  Combine tables, use conditional masks

51 ©2017 Open-NFP

Summary

▪  Flow records are powerful for high coverage, low overhead
network monitoring.

▪ Generating them efficiently, without sacrificing information
richness, is a challenge.

▪ Our P4 accelerator can increase flow generator capacity by factor of
10 or more, without sacrificing information richness.

▪  Table merging, conditional masks, and P4 accessible semaphores
are useful and portable optimization techniques.

▪ Code available (soon) at: https://github.com/jsonch/p4_code
▪  Thank you for attending!

52 ©2017 Open-NFP

THANK YOU!

