
1 ©2017 Open-NFP

Scalable and Robust DDoS
Detection via Universal Monitoring
Vyas Sekar
Joint work with:
Alan Liu, Vladimir Braverman JHU
Hun Namkung, Antonis Manousis, CMU

2 ©2017 Open-NFP

DDoS	a&acks	are	ge-ng	worse	

Increasing	in	number	

Threatpost,	7/31/2015	

The	New	York	Times,	
3/30/2015	

Increasing	in	power	
Increasing	in	diversity	

Incapsula,	11/12/2014	

Arbor	Networks,	2/14/2014	 Radware,	10/7/2014	

Cloudflare,	3/27/2013	 Techworld,	7/16/2014	

Half of companies experience more than five
DDoS attacks a year.

Neustar,	2014	

3 ©2017 Open-NFP

SYN	Flood	 UDP	Flood	

NTP	Flood	 DNS	Amplifica4on		

•  Who’s	sending	a	lot	more	traffic	than	10min	ago?		
•  Who’s	sending	a	lot	to	10.0.1.0/16?		
•  Is	there	asymmetry	in	packet	counts	in	direcCons?	

Many attacks, many algorithms!

4 ©2017 Open-NFP

1613111

Flow reports1

Prior work: Not good for fine-grained analysis!

11316111131611

12

Sample packets at random, group into flows

FlowId CounterFlow = Packets with same pattern  
Source and Destination Address and
Ports

Estimate: FSD, Entropy, Heavy Hitters …

Classical Netflow-style packet sampling

5 ©2017 Open-NFP

Packet		
Processing	

Counter		
Data	

Structure
s	

Applica4on-Level	
Metric	

Heavy	Hi&er	 Entropy	 Superspreade
r	

Higher Complexity with more applications
Higher development time as new applications appear  

Tight Binding between monitoring data and control plane

….

Packet		
Processing	

Counter		
Data	

Structure
s	

Applica4on-Level	
Metric	

Packet		
Processing	

Counter		
Data	

Structure
s	

Applica4on-Level	
Metric	….

Traffic	

Pre-deployed
Algorithms

Alternative: App-specific sketches

6 ©2017 Open-NFP

XOR	

Today	

AND	

e.g.,	NetFlow	 e.g.,	Sketches	

Generality	
Late	Binding	 Fidelity	

Driving question for our work

7 ©2017 Open-NFP

Does such a construction exist?

Is it feasible to implement?

Does it extend to a network-wide setting?
e.g., Multiple paths, Multiple dimensions

Is it competitive w.r.t. custom algorithms?

Many open questions..

8 ©2017 Open-NFP

Does such a construction exist?

Is it feasible to implement?

Does it extend to a network-wide setting?
e.g., Multiple paths, Multiple dimensions

Is it competitive w.r.t. custom algorithms?

Roadmap for this talk

9 ©2017 Open-NFP

1331511 2 4 6 5 …...

frequency vector < f1,f2 … fn >

•  Basic Streaming Algorithms:
Frequency Moments Fk = ∑𝑖=1↑𝑛▒𝑓↓𝑖↑𝑘  
F2 : AMS Sketch, Count Sketch
…...
One algorithm solves one problem

•  Universal Streaming?

1331511 2 4 6 5 …...

frequency vector < f1,f2 … fn >
G-sum = ∑𝑖=1↑𝑛▒𝑔(𝑓↓𝑖 ) 

Universality:
arbitrary g() function?

(A stream of length m with n unique items)

Concept of Universal Streaming

10 ©2017 Open-NFP

Thm 1:
There exists a universal approach to estimate G-sum
when g() function is non-decreasing such that g(0)=0, and
𝑔(𝑓↓𝑖 ) doesn’t grow monotonically faster than 𝑓↓𝑖 2 .

Thm 2:
A universal sketch construction can be used to estimate G-
sum with high probability using polylogmithric memory.

Theory of Universal Streaming

11 ©2017 Open-NFP

Informal Definition: Item 𝑖 is a 𝑔-heavy hitter if changing
its frequency 𝑓↓𝑖  significantly affects its G-sum.

Case 1: there is one sufficiently large a 𝑔-heavy hitter

Most of mass is concentrated in this heavy hitter.
Use L2 Heavy Hitter algorithm to find such a heavy hitter.

Case 2: there is NOT single sufficiantly large a 𝑔-heavy hitter

Find heavy hitters on a series of sampled substreams of
increasingly smaller size.

Intuition behind Universality

12 ©2017 Open-NFP

1	3	3	1	5	1	1	 2	 4	 6	 5	

1	1	5	1	1	

2	5	

2	

L2	Heavy	HiMer(HH)	Alg	

(1,4),	(3,2),(5,2)	

(1,4),	(5,2),(2,1)	

…
...	

(2,1)	

(5,2),	(2,1)	

0

1

log(n)	

…
...	

2	 5	

5	

Level
s	

Heavy	Hi&er	Alg	

Heavy	Hi&er	Alg	

Heavy	Hi&er	Alg	

Heavy	Hi&er	Alg	

In	Parallel	 Heavy	HiMers	and	Counters	

Generate	log(n)	substreams	
by	zero-one	hash	funcs	

H1….Hlog(n)	
Count-Sketch	etc.	

EsCmated	
G-sum	

Universal Sketching Algorithm

13 ©2017 Open-NFP

Sampling	
(Hash	func)	

Sketching	
Registers	

App	1	

ApplicaCon-specific	ComputaCon	

App	n	…...	

Traffic	

Update	Counters	

Top-K	
Possible	keys	

Top-K	
	

Sketching	Sampling	 Top-K	 App-Es4ma4on	

Universal Monitoring Realization

14 ©2017 Open-NFP

Does such a construction exist?

Is it feasible to implement?

Does it extend to a network-wide setting?
e.g., Multiple paths, Multiple dimensions

Is it competitive w.r.t. custom algorithms?

Roadmap for this talk

15 ©2017 Open-NFP

O1	

O2	

A	 B	

D1	

D2	

N nodes
D dimensions

(e.g., src, srcdst)

Trivial sol: place D*N sketches
Our goal: Place s sketches, where s<<D*N
One-big-switch abstraction

D	

D	

D	

D	D	

D	

One sketch for each dim

𝐷
/
2 	

𝐷
/
2 	

Network-Wide Problem

16 ©2017 Open-NFP

Does such a construction exist?

Is it feasible to implement?

Does it extend to a network-wide setting?
e.g., Multiple paths, Multiple dimensions

Is it competitive w.r.t. custom algorithms?

Roadmap for this talk

17 ©2017 Open-NFP

•  Traces: CAIDA backbone traces
•  Split into different “epoch” durations

•  Memory setup: 600KB—5MB

•  Application metrics: HH, Change, DDoS

•  Custom algorithms from OpenSketch

Evaluation Setup

18 ©2017 Open-NFP

0.01
1

5

10

OC192-P4
OC192-1

OC192-2
OC192-3

OC192-4
OC192-5

E
rr

o
r

R
a
te

 (
%

)

Heavy Hitter
Change Detection

DDoS

0.01

1

2

3

OC192-1
OC192-2

OC192-3
OC192-4

OC192-5

E
rr

o
r

R
a

te
 (

%
)

Heavy Hitter
Change Detection

DDoS

UnivMon		
(Total	600KB)	

OpenSketch	
(600KB/task)	

Key	Takeaways:	
	
v  Stable	cross	

traces	
v  Error	gap	<	3.6%	
v  Good	accuracy		
with	limited	memory	
	

UnivMon is Competitive

19 ©2017 Open-NFP

-10

-5

-1
1

5

10

Appset1
Appset2

Appset3

E
rr

o
r

G
a

p
 (

%
)

Heavy Hitter
DDoS

Change Detection

{HH}	 {HH,DDOS}	 {HH,DDOS,Change}	

UnivMon is Better as Portfolio Grows!

20 ©2017 Open-NFP

Does such a construction exist?

Is it feasible to implement?

Does it extend to a network-wide setting?
e.g., Multiple paths, Multiple dimensions

Is it competitive w.r.t. custom algorithms?

Roadmap for this talk

21 ©2017 Open-NFP

Sampling	 Sketching	 Top-K	

App-Es4ma4on	

P4 Hash Funcs P4 Registers Hash Funcs
 +

P4 Registers

Custom Libraries

Mapping Data Plane to P4

22 ©2017 Open-NFP 22	

HW	Complexity	(need	Priority	Queue)	

Storage/Comm	Overhead	(report	Top-K	to	controller)	

Hard	in	
hardware	

Sampling	 Sketching	 Top-K	

App-Es4ma4on	

Sampling	 Sketching	 Top-K	

App-Es4ma4on	

HW	Complexity	

Storage/Comm	Overhead	(report	enCre	sketch/keys)	

Several	MBs	
more	

Design choices for realization

23 ©2017 Open-NFP

Implementation in Netronome: Step 1

Initial attempt: We tried with UnivMon P4 Code

Found out limitation of P4
▪ No Loop statement – out of space in Netronome
▪  Lack of Expressiveness, want to store seed values for hash. Store

this at low level memory.

24 ©2017 Open-NFP

Implementation in Netronome: Step 2

So we switched to Micro-c capabilities

Some difficulties in porting/understanding APIs figuring out
performance bottlenecks

We used the simulator to profile the bottleneck

Found out hash computation is the problem!

25 ©2017 Open-NFP

Optimizing hash operation

•  Shih	operaCon	instead	of	modular	operaCon	
•  a,b	:	64	bit	random	integer,	x	:	32bit	key	
•  Ha,b(x)	=	((ax	+	b)	%	p)	%	m	
•  Ha,b(x)	=	((ax	+	b)	>>	32)	&	n	

26 ©2017 Open-NFP

Takeaway from basic improvements

•  Shih	operaCon	is	much	faster	than	modular	operaCon	in	
Netronome	

•  UnivMon	can	exploit	parellelism	with	Netronome.	Atomic	engine	
did	a	great	job	to	solve	synchronizaCon	issues	with	sketch	counters	

•  LimitaCon	:	Shih	operaCon	can’t	guarantee	enough	randomness	of	
hash	funcCons	and	fair	accuracy	of	sketching	

27 ©2017 Open-NFP

Ideas: Use Tabular Hash

2.7GB runs out of memory
204MB is possible to implement
Now all of tables are in the DRAM of NIC

•  Memory	read	is	faster	than	modular	operaCon	and	it	has	higher	independence	

28 ©2017 Open-NFP

Tabular hash results - Kpps

Baseline(forwarding)	
max	pps	:	17300K	pps	

Line	Rate	with	max	packet	
size	(1500)	:	3245	

29 ©2017 Open-NFP

Tabular hash throughput results

•  Char	Table	32	->	can	cover	
2	dimension	with	line	rates	

•  64bit	is	slower	

30 ©2017 Open-NFP

Some lessons and takeaways

Simulator helped!
 We could profile the bottleneck of our implementation

with built-in simulator of IDE

UnivMon is feasible on NFP at line-rate

 with 3 dimensions and 5-independent hash function

C programming with Netronome has greater flexibility!

31 ©2017 Open-NFP

Ongoing and Next Steps

APIs to write applications and queries on UnivMon

Suite of DDoS detection applications

Continue profiling and benchmarking

 Other platforms as well (e.g., openvswitch, fd.io)

32 ©2017 Open-NFP

Conclusions

•  DDoS Detection needs more flexibility and
programmability

•  Today: General XOR Flexible
Vision: General + Flexible via Universal Monitoring

•  Initial promise: Feasible, accurate, possible to implement

•  Ongoing and future work:
Performance profiling, “Northbound” APIs etc.

