(>> OpenContrail, Real Speed: Offloading vRouter

Chris Telfer, Distinguished Engineer, Netronome

Ted Drapas, Sr Director Software Engineering, Netronome

Agenda G’ OenNFP

= |[ntroduction to OpenContrail & OpenContrail vRouter
= NFP Acceleration Strategy

= Software Architecture

= Results and Conclusions

= Questions

©2017 Open-NFP 2

OpenContrail, Real Speed: Offloading vRouter

@ Introduction to OpenContrail and
VRouter

What is Contrail? G’ OvenNFP

(Y) CONTRALLIS.. ())

« Juniper's open-saurce Cloud AP| driven -» enables Policy Automation

ol s DpenStack Neutron API
Egé:fgr initiative (Apache vZ St Bersaka fildsts

y . « Amazon WYPC/GCP
Built using standards-based '
sratacols for interdperability (BGP, s« REST APIs far custom archestration

XMPP, ..} Systems

Provides all components for network Carrier Grade platform for Cloud
virtualization = Overlay networks for Infrastructure:
s KVM or ESXi Vs = [ata Plane High Performance
» Bare Metal Servers « Control Plane Scaling
« Containers « High availability design .
« Ease of operation with Analyt

... For more information = gpencontrail.org
Copyright and Courtesy of our partners Juniper Networks

©2017 Open-NFP

What is Contrail? TG opennre

OpenContrail consists of two main components

= OpenContrail Controller - Software Defined Networking (SDN) controller
that is responsible for providing the management, control, and analytics
functions of the virtual network

= OpenContrail vRouter - Programmable (by controller) datapath for
managing data center networks

©2017 Open-NFP 5

What is vRouter? Z

VRouter is the programmable datapath of OpenContrail
= Connects to an underlay network and manages overlay networks

= Similar in purpose to OVS, but designed specifically for datacenters
* Assumes / optimizes the use of point-to-point tunnels over the underlay

. UDP/MPLS (L2/L3), GRE/MPLS (L2/L3), VXLAN (L2 only)

= |s a “distributed device”
* Acts as an L2 switch or L3 router on the overlay
« Software sees one device, but it is spread across all compute nodes
* Runs in the hypervisor

= Has both a kernel module and DPDK implementation

©2017 Open-NFP 6

vRouter in a Compute Node T CF openNFp

Controllers Orchestration
‘ Layer

User

Kernel

NIC l

©2017 Open-NFP |

Problem Statement TG opennre

Why the need for the NFP?
..... performance & overhead.....

= vRouter evolution without NFP
» kernel vRouter - pkt delivery to VMs via kernel TAP interfaces - slow

*Ss0 go to user spaceDPDK vRouter - significantly improves PPS
compared to kernel vRouter, but at a significant price

 DPDK vRouter achieves ~1.5 Mpps per core

= For the vRouter datapath to meet the needs of high-performance
VNFs on compute nodes it must use significant CPU resources

= These resources therefore are not available for the VMs running on
the compute node

©2017 Open-NFP 8

Problem Solution G openne

= [ncorporating the NFP to offload the vRouter datapath (or any similar
data path) on the host allows recovery of CPU resources

= Direct packet delivery from NFP into VMs can achieve higher
performance than host-only software even with many dedicated
cores

©2017 Open-NFP 9

OpenContrail, Real Speed: Offloading vRouter

(———> NFP Acceleration Strategy

Acceleration Requirements G openne

Two key goals: performance and transparency
= Main codebase should function regardless of acceleration
= End user ideally only sees a perf boost

Key Idea: NFP is an "ultra fastpath" parallel to vRouter
= BUT: NFP can't offload the full contrail logic
= Falls back to vRouter datapath if it can't handle a packet

©2017 Open-NFP 11

Review: Compute Node

Controllers Orchestration

Y

e TR -

User \
“-—___H
Flow
Kernel Table

o

vy

@’ OpenNFP

©2017 Open-NFP

12

Integration Points @ opennep

Our solution touches the vRouter codebase at 3 points:
1. Hardware offload API in the vRouter datapath

o Intercepts and mirrors configuration changes to the NFP
O Proxies stats requests to add in NFP counters

2. Representative Interfaces (RIs) in the Linux kernel
o “Fake” netdevs that map to physical and virtual interfaces
o Xmit on an Rl sends the packet out the real interface via NFP
o Arriving packet on an Rl looks like it came from the
corresponding interface
3. Port control changes for interface allocation/teardown
o This was a script run by OpenStack but provided by JNPR

©2017 Open-NFP 13

NFP Acceleration Approach G’ OpenNFP

Controllers Orchestration
I A Layer
v :

VMO VM1

User Port Cfg module

Create/
Assign

Kernel
Control Channel t
Flow
NFP =¢ JNFP vRouter Datapath

L

o [T

©2017 Open-NFP 14

Day in the Life of a Packet

Controllers Orchestration

I I Lager

User Port Cfg module
E,'Sﬂ;am “New Flow"
Kernel
Offload
API
JY
Control QIV-.IRITET 1 .,
Flow -~ ..
NFP Table_JNEP vRouter Datapath

A

@. OpenNFP

©2017 Open-NFP

15

Day in the Life of a Packet (cont) G’ ovennre

Controllers Orchestration

T

5
Port Cfg module |

VMO | VM
:
g |
i |

User

Kernel

|
ISRjIOV ‘
]

]
I
L}
[
]

Control Channel 1
Flow
NFP 96 NP \Router Datanath. .- +<s

A

©2017 Open-NFP 16

OpenContrail, Real Speed: Offloading vRouter

(——> Software Architecture

OfﬂOad MOdUIG @”’OpenNFP

to vRouter.ko A

Config
Updates

Packets

©2017 Open-NFP 18

Kernel Module Design " @ ovennep

nfp-vrouter.ko module registers with vRouter offload API
Separate kernel thread to perform trie building ops
= Expensive operation: can’t hold up packets
= Fortunately also infrequent
= Accumulate and double-buffer routing tables
Stats manager updates vRouter and kernel statistics
Control channel carries both control messages and packets
= Both encapsulated in a common format
= Rl packets muxed/demuxed over the control channel

©2017 Open-NFP i

NFP Firmware G’ opennFP

i
- |
1 -

v
o
LR
i b
.
)
P
et
et
AL

e ameE®

©2017 Open-NFP 20

Firmware Design G openne

Main ME islands have a pool of run-to-completion workers
Workers access tables primarily read-only

= except for per-flow statistics

vRouter's update rate is less than 100,000 ops/sec
= Can do this on 1 or 2 NFP cores
= Preserves code store in the workers

Control messages demuxed to management subsystems
Several MEs to periodically poll, and push statistics
Separate mirroring MEs for copying, fragmentation and xmit

©2017 Open-NFP 21

OpenContrail, Real Speed: Offloading vRouter

@ Results and Lessons Learned

7727 277772777777 /7777 77

Performance Results G’ opennFp

Demonstrated moving over 20 Mpps w/ imix
distribution no-drop through VNFs utilizing 1
(mostly idle) core”

Sustained >27 Mpps in DPDK pktgen tests

Upcoming webinar will discuss methodology

*SR-IOV delivery to a service chain configured VNF

23

Conclusions G opennee

Programmable hardware enables transparent offload
= The impact to the dataplane is mirroring state updates to the NFP
= One can easily abstract this to be hardware-neutral

Acceleration is feasible even without offloading 100% of the
dataplane

= Sophisticated fast paths follow the 90/10 rule as with most software:
90% of the work is done in 10% of the code

= With transparent offload you can pick and choose what gets
offloaded and what falls back to the main datapath

©2017 Open-NFP 24

Future Work oNep

We plan to continue on this work as OpenContrail evolves
as well

= Support full 4.0 Contrail feature set and OpenStack Newton
= Add QoS offload in the NFP

= Support for multi-card servers

= Accelerate container based SDN deployments

= Accelerate VMWare deployments

= Add support for custom VNFs offloaded within the dataplane
= Offload flow classification within the NFP

©2017 Open-NFP 25

OpenContrail, Real Speed: Offloading vRouter

——> Questions

