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OpenContrail, Real Speed: Offloading vRouter

@ Introduction to OpenContrail and
VRouter



What is Contrail? G’ OvenNFP

(Y ) CONTRALLIS.. ())

« Juniper's open-saurce Cloud AP| driven -» enables Policy Automation

ol s DpenStack Neutron API
Egé:fgr initiative (Apache vZ St Bersaka fildsts

y . « Amazon WYPC/GCP
Built using standards-based '
sratacols for interdperability (BGP, s« REST APIs far custom archestration

XMPP, ..} Systems

Provides all components for network Carrier Grade platform for Cloud
virtualization = Overlay networks for Infrastructure:
s KVM or ESXi Vs = [ata Plane High Performance
» Bare Metal Servers « Control Plane Scaling
« Containers « High availability design .
« Ease of operation with Analyt

... For more information = gpencontrail.org
Copyright and Courtesy of our partners Juniper Networks
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What is Contrail? TG opennre

OpenContrail consists of two main components

= OpenContrail Controller - Software Defined Networking (SDN) controller
that is responsible for providing the management, control, and analytics
functions of the virtual network

= OpenContrail vRouter - Programmable (by controller) datapath for
managing data center networks
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What is vRouter? Z

VRouter is the programmable datapath of OpenContrail
= Connects to an underlay network and manages overlay networks

= Similar in purpose to OVS, but designed specifically for datacenters
* Assumes / optimizes the use of point-to-point tunnels over the underlay

. UDP/MPLS (L2/L3), GRE/MPLS (L2/L3), VXLAN (L2 only)

= |s a “distributed device”
* Acts as an L2 switch or L3 router on the overlay
« Software sees one device, but it is spread across all compute nodes
* Runs in the hypervisor

= Has both a kernel module and DPDK implementation
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vRouter in a Compute Node T CF openNFp
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Problem Statement TG opennre

Why the need for the NFP?
..... performance & overhead.....

= vRouter evolution without NFP
» kernel vRouter - pkt delivery to VMs via kernel TAP interfaces - slow

* ....Ss0 go to user space ....DPDK vRouter - significantly improves PPS
compared to kernel vRouter, but at a significant price

 DPDK vRouter achieves ~1.5 Mpps per core

= For the vRouter datapath to meet the needs of high-performance
VNFs on compute nodes it must use significant CPU resources

= These resources therefore are not available for the VMs running on
the compute node
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Problem Solution G openne

= [ncorporating the NFP to offload the vRouter datapath (or any similar
data path) on the host allows recovery of CPU resources

= Direct packet delivery from NFP into VMs can achieve higher
performance than host-only software even with many dedicated
cores
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OpenContrail, Real Speed: Offloading vRouter

(———> NFP Acceleration Strategy



Acceleration Requirements G openne

Two key goals: performance and transparency
= Main codebase should function regardless of acceleration
= End user ideally only sees a perf boost

Key Idea: NFP is an "ultra fastpath" parallel to vRouter
= BUT: NFP can't offload the full contrail logic
= Falls back to vRouter datapath if it can't handle a packet
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Review: Compute Node
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Integration Points @ opennep

Our solution touches the vRouter codebase at 3 points:
1. Hardware offload API in the vRouter datapath

o Intercepts and mirrors configuration changes to the NFP
O Proxies stats requests to add in NFP counters

2. Representative Interfaces (RIs) in the Linux kernel
o “Fake” netdevs that map to physical and virtual interfaces
o Xmit on an Rl sends the packet out the real interface via NFP
o Arriving packet on an Rl looks like it came from the
corresponding interface
3. Port control changes for interface allocation/teardown
o This was a script run by OpenStack but provided by JNPR
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NFP Acceleration Approach G’ OpenNFP
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Day in the Life of a Packet
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Day in the Life of a Packet (cont) G’ ovennre
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OpenContrail, Real Speed: Offloading vRouter

(——> Software Architecture



OfﬂOad MOdUIG @”’OpenNFP
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Kernel Module Design " @ ovennep

nfp-vrouter.ko module registers with vRouter offload API
Separate kernel thread to perform trie building ops
= Expensive operation: can’t hold up packets
= Fortunately also infrequent
= Accumulate and double-buffer routing tables
Stats manager updates vRouter and kernel statistics
Control channel carries both control messages and packets
= Both encapsulated in a common format
= Rl packets muxed/demuxed over the control channel
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NFP Firmware G’ opennFP
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Firmware Design G openne

Main ME islands have a pool of run-to-completion workers
Workers access tables primarily read-only

= except for per-flow statistics

vRouter's update rate is less than 100,000 ops/sec
= Can do this on 1 or 2 NFP cores
= Preserves code store in the workers

Control messages demuxed to management subsystems
Several MEs to periodically poll, and push statistics
Separate mirroring MEs for copying, fragmentation and xmit
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OpenContrail, Real Speed: Offloading vRouter

@ Results and Lessons Learned
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Performance Results G’ opennFp

Demonstrated moving over 20 Mpps w/ imix
distribution no-drop through VNFs utilizing 1
(mostly idle) core”

Sustained >27 Mpps in DPDK pktgen tests

Upcoming webinar will discuss methodology

*SR-IOV delivery to a service chain configured VNF
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Conclusions G opennee

Programmable hardware enables transparent offload
= The impact to the dataplane is mirroring state updates to the NFP
= One can easily abstract this to be hardware-neutral

Acceleration is feasible even without offloading 100% of the
dataplane

= Sophisticated fast paths follow the 90/10 rule as with most software:
90% of the work is done in 10% of the code

= With transparent offload you can pick and choose what gets
offloaded and what falls back to the main datapath
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Future Work oNep

We plan to continue on this work as OpenContrail evolves
as well

= Support full 4.0 Contrail feature set and OpenStack Newton
= Add QoS offload in the NFP

= Support for multi-card servers

= Accelerate container based SDN deployments

= Accelerate VMWare deployments

= Add support for custom VNFs offloaded within the dataplane
= Offload flow classification within the NFP
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——> Questions



