
1
©2017 Open-NFP

Network Measurement with
P4 and C on Netronome NFP

Xiaoban Wu, Yan Luo

Dept. of Electrical and Computer Engineering

University of Massachusetts Lowell

2
©2017 Open-NFP

Introduction

▪ P4 is a high-level language for programming protocol-independent
packet processors.

▪ NFP SDK provides C Sandbox.
▪ We want to use both P4 and C to develop some protocol-

independent measurement functions.

3
©2017 Open-NFP

Measurement Functions

▪ Network measurement has been playing a crucial role in network
operations, since it can not only facilitate traffic engineering, but also
detect the anomalies.

▪ For example, counting the heavy hitter and the number of unique
flows can be used to detect DoS attacks and port scans.

▪ However, it is difficult to count in high speed links. Hence, we usually
resort to sketch which requires small processing cycle on each
packet and maintains good approximation based upon probability.

4
©2017 Open-NFP

Measurement Functions

▪ Heavy Hitter
● Count-Min

▪ Number of Unique Flows

● Bitmap

5
©2017 Open-NFP

Algorithm of Count-Min
struct Flow;
struct Heavy_Hitter {
 struct Flow flow;
 uint32_t count;

};

//Gloabal
struct Heavy_Hitter heavy_hitter;
uint32_t sketch[3][N];
uint32_t hash0(struct Flow flow);
uint32_t hash1(struct Flow flow);
uint32_t hash2(struct Flow flow);

//Note: max-heap can be used to maintain
multiple global heavy hitters

foreach flow

hv0 hv1 hv2

hash0 hash1 hash2

sketch[0][hv0] sketch[1][hv1] sketch[2][hv2]

Read, update, and write sketch

min

heavy_hitter.flow = flow
heavy_hitter.count = min

if(min > heavy_hitter.count)

Yes

6
©2017 Open-NFP

Algorithm of Count-Min

Before flowA, heavy_hitter.flow = flowB and heavy_hitter.count = 2.

Read flowA,

Write flowA,

Now, the min{8,5,3} is 3. Since 3 > 2, heavy_hitter.flow = flowA and
heavy_hitter.count = 3

hash0(flowA) 7

hash1(flowA) 4

hash2(flowA) 2

hash0(flowA) 8

hash1(flowA) 5

hash2(flowA) 3

7
©2017 Open-NFP

Algorithm of Bitmap

struct Flow;
uint32_t sketch[N];
unit32_t hash(struct Flow flow);

foreach flow

pos

hash

sketch[pos] = 1

Count the number of 0
in the sketch, say Z

The number of unique flows
is estimated as N*ln(N/Z)

8
©2017 Open-NFP

Algorithm of Bitmap

The number of unique flows is estimated as 4*ln(4/2) = 2.7

The number of zero bits is Z = 2

Initial: 0 0 0 0

FlowA: 1 0 0 0

FlowB: 1 0 0 1

FlowC: 1 0 0 1

The number of zero bits is Z = 2
The number of unique flows is estimated as 4*ln(4/2) = 2.7

9
©2017 Open-NFP

Restrictions of P4-14

▪ P4-14 has some essential restrictions.
● If-else statement can only be used in the control block.
● It does not support for-loop.
● It has only a limited set of primitive actions.

10
©2017 Open-NFP

Restrictions of P4-14 (1)

▪ If-else statement can only be used in the control block. This implies
we can not use if-else statement in the action body of P4.

▪ Suppose we have 3 variables A, B, C in P4 program, how do we
determine the minimum?

11
©2017 Open-NFP

Restrictions of P4-14 (1)
action do_find_min1{
 modify_field(D, A);
}
table find_min1 {
 actions {
 do_find_min1;
 }
}

action do_find_min2{
 modify_field(D, B);
}
table find_min2 {
 actions {
 do_find_min2;
 }
}

action do_find_min3{
 modify_field(D, C);
}
table find_min3 {
 actions {
 do_find_min3;
 }
}

12
©2017 Open-NFP

Restrictions of P4-14 (1)
control ingress {
 apply(find_min1);
 if(D > B) {
 apply(find_min2);
 }
 if(D > C) {
 apply(find_min3);
 }
}

AND Populate the table entries
to indicate the default
action for each table!!!

13
©2017 Open-NFP

Restrictions of P4-14 (1)

▪ This scenario is exactly one part of the Count-Min algorithm. Hence,
implementation of the Count-Min algorithm with vanilla P4 become
tedious labor work.

▪ How to work around of this?

14
©2017 Open-NFP

Restrictions of P4-14 (2)

▪ P4 does not support for-loop.
▪ Suppose we have an array ARR of size 1024 with 0 and 1 in it, how

to find the number of 0 in this array?

15
©2017 Open-NFP

Restrictions of P4-14 (2)

▪ Shall we try the mentioned approach we used to find the minimum
before? If so, we need to implement 1 table and 1024 if-statements.

▪ This scenario happens exactly in the Bitmap algorithm.
▪ How to work around of this?

action do_inc_count {
add_to_field(count, 1);

}
table inc_count {

actions {
do_inc_count;

}
}

control ingress {
if (ARR0 == 0) {

apply(inc_count);
}
…
if (ARR1023 == 0) {

apply(inc_count);
}

}

16
©2017 Open-NFP

Restrictions of P4-14 (3)

▪ P4 has only a limited set of primitive actions.
▪ Suppose now we need a completely new P4 primitive, so that we

could put an elephant into a refrigerator, how can we do this?

17
©2017 Open-NFP

Characteristic of NFP SDK

▪ P4 C Sandbox function
● We can call into C code from P4 program
● This fixes every restriction we mentioned before

18
©2017 Open-NFP

Characteristic of NFP SDK – P4 Side

header_type A_t {
 fields {
 timestamp : 32;
 }
}
metadata A_t A;

header_type ipv4_t {
 fields {
 srcAddr : 32;
 dstAddr : 32;
 }
}
header ipv4_t ipv4;

primitive_action my_function();
action work() {
 my_function();
}

19
©2017 Open-NFP

Characteristic of NFP SDK – C Side

int pif_plugin_my_function (EXTRACTED_HEADERS_T *headers,
MATCH_DATA_T *match_data)

{

 PIF_PLUGIN_ipv4_T *ipv4_header = pif_plugin_hdr_get_ipv4(headers);

 uint32_t srcAddr = PIF_HEADER_GET_ipv4___srcAddr(ipv4_header);

 uint32_t dstAddr = PIF_HEADER_GET_ipv4___dstAddr(ipv4_header);

 uint32_t prev = pif_plugin_meta_get__A__timestamp(headers);

 pif_plugin_meta_set__A__timestamp(headers, prev +20);

 return PIF_PLUGIN_RETURN_FORWARD;

}

20
©2017 Open-NFP

Implementations

▪ Count-Min
● Count-Min with Vanilla P4
● Count-Min with P4 and C Sandbox
● Count-Min with P4 and C Sandbox with Lock

▪ Bitmap
● Bitmap with P4 and C Sandbox
● We skip the detail of this one

▪ Source Code is available at https://github.com/open-nfpsw/M-Sketch

21
©2017 Open-NFP

Count-Min with Vanilla P4

▪ Stateful memory: register
▪ Race condition: “@pragma netro reglocked”
▪ For safety: “@pragma netro no_lookup_caching”

22
©2017 Open-NFP

Count-Min with Vanilla P4

#define ELEM_COUNT 4
register r1 { width : 32; instance_count : ELEM_COUNT; }
register r2 { width : 32; instance_count : ELEM_COUNT; }
register r3 { width : 32; instance_count : ELEM_COUNT; }
register hh_r { width : 32; instance_count: 3; }

@pragma netro reglocked r1;
@pragma netro reglocked r2;
@pragma netro reglocked r3;
@pragma netro reglocked hh_r;

r1, r2 and r3 forms the sketch[3]
[4] in the Count-Min algorithm
we introduced before.

hh_r forms the global heavy
hitter.

23
©2017 Open-NFP

Count-Min with Vanilla P4
header_type counter_table_metadata_t{
 fields{
 h_v1 : 16;
 h_v2 : 16;
 h_v3 : 16;
 count1 : 32;
 count2 : 32;
 count3 : 32;
 count_min : 32;
 }
}
metadata counter_table_metadata_t
counter_table_metadata;

header_type heavy_hitter_t {
 fields{
 srcAddr : 32;
 dstAddr : 32;
 count : 32;
 }
}
metadata heavy_hitter_t heavy_hitter;

These are used for transition in/out
register, since we can not directly operate
on register in P4.

24
©2017 Open-NFP

Count-Min with Vanilla P4
action do_update_cm(){
 modify_field_with_hash_based_offset(counter_table_metadata.h_v1, 0, ipv4_hash0, ELEM_COUNT);
 modify_field_with_hash_based_offset(counter_table_metadata.h_v2, 0, ipv4_hash1, ELEM_COUNT);
 modify_field_with_hash_based_offset(counter_table_metadata.h_v3, 0, ipv4_hash2, ELEM_COUNT);
 register_read(counter_table_metadata.count1, r1, counter_table_metadata.h_v1);
 register_read(counter_table_metadata.count2, r2, counter_table_metadata.h_v2);
 register_read(counter_table_metadata.count3, r3, counter_table_metadata.h_v3);
 add_to_field(counter_table_metadata.count1, 0x01);
 add_to_field(counter_table_metadata.count2, 0x01);
 add_to_field(counter_table_metadata.count3, 0x01);
 register_write(r1, counter_table_metadata.h_v1, counter_table_metadata.count1);
 register_write(r2, counter_table_metadata.h_v2, counter_table_metadata.count2);
 register_write(r3, counter_table_metadata.h_v3, counter_table_metadata.count3);
}
@pragma netro no_lookup_caching do_update_cm;

ipv4_hash0, ipv4_hash1, ipv4_hash2 are of type field_list_calculation, and they match
hash0, hash1 and hash2 functions we mentioned in the Count-Min algorithm

25
©2017 Open-NFP

Count-Min with P4 and C Sandbox

▪ No need to go through that tedious process of finding the minimum.
▪ Replace “@pragma netro reglocked” by “mem_read_atomic()” and

“mem_write_atomic()”

26
©2017 Open-NFP

Count-Min with P4 and C Sandbox with Lock

Wait, if we look closely at our previous implementation, there is a loophole.

if(min > heavy_hitter.count) {
 heavy_hitter.flow = flow;
 heavy_hitter.count = min;
}

The loophole is that such comparison and updating process
have to be a critical section, otherwise we could have a
scenario where two threads are all thinking they are having the
heavy hitter, so that the updating process could go wrong.

Moreover, we can see that it is impossible to implement a lock
with pure P4 under this case. We have to use C sandbox.

27
©2017 Open-NFP

Count-Min with P4 and C Sandbox with Lock

● Implementation of a lock in C Sandbox

__export __mem uint32_t lock = 0; //Global
//local below
__xwrite uint32_t xfer_out = 0;
__xrw uint32_t xfer = 1;
mem_test_set(&xfer, &lock, sizeof(uint32_t));
while(xfer == 1) {
 mem_test_set(&xfer, &lock, sizeof(uint32_t));
}
// Critical Section
mem_write32(&xfer_out, &lock, sizeof(uint32_t));

28
©2017 Open-NFP

Performance Evaluation
▪ We use 2 2x40G Agilio cards for our performance evaluation, one on

each host.
▪ We use the intrinsic_metadata.ingress_global_tstamp to collect the

time stamp at the ingress port.
▪ In order to get the latency, we let each packet go through the

PIF_RTE twice, where vf0_0 to vf0_1 is done by ovs bridge br0

sdn_p0

 br0

sdn_v0.0
sdn_p0

PIF_RTE

vf0_0

vf0_2

Host A

vf0_1

br0

Host B

29
©2017 Open-NFP

Performance Evaluation

▪ The “Vanilla P4” has the longest latency, 5.7% larger than “P4 and C
Sandbox”, 4.8% larger than “P4 and C Sandbox with Lock”. This is
probably due to many tables on the pipeline.

▪ The “P4 and C Sandbox with Lock” has almost the same ME cycle
with “P4 and C Sandbox”, but it guarantees the accuracy of the
algorithm. Hence, for Count-Min, we would always opt for “P4 and C
Sandbox with Lock”.

Vanilla P4 P4 and C Sandbox P4 and C Sandbox with
Lock

7798 ME cycle 7376 ME cycle 7441 ME cycle

30
©2017 Open-NFP

Reference

▪ An Improved Data Stream Summary: The Count-Min Sketch and its
Applications, Graham Cormode, S. Muthukrishnan.

▪ Bitmap Algorithms for Counting Active Flows on High Speed Links,
Cristian Estan, George Varghese, Mike Fisk.

31
©2017 Open-NFP

Thanks!
We especially want to thank David George, Mary Pham,
Gerhard de Klerk, Behdad Besharat, Nick Viljoen and Hun
Namkung for their invaluable input on the Open-NFP
Google group.

We especially want to thank David George, Mary Pham,
Gerhard de Klerk, Behdad Besharat, Nick Viljoen and Hun
Namkung for their invaluable input on the Open-NFP
Google group.

We especially want to thank David George, Mary Pham,
Gerhard de Klerk, Behdad Besharat, Nick Viljoen and Hun
Namkung for their invaluable input on the Open-NFP
Google group.

32
©2017 Open-NFP

Appendix: algorithm of Count-Min
struct Flow;
struct Heavy_Hitter {
 struct Flow flow;
 uint32_t count;

};

//Gloabal
struct Heavy_Hitter heavy_hitter;
uint32_t sketch[3][N];
uint32_t hash0(struct Flow flow);
uint32_t hash1(struct Flow flow);
uint32_t hash2(struct Flow flow);

//Note: max-heap can be used to maintain
multiple global heavy_hitters

foreach flow in flow_set {
 uint32_t hv[3];
 uint32_t hv[0] = hash0(flow);
 uint32_t hv[1] = hash1(flow);
 uint32_t hv[2] = hash2(flow);
 for(i=0; i<3; i++)
 sketch[i][hv[i]] += 1;
 uint32_t min = sketch[0][hv[0]];
 for(i=1; i<3; i++) {
 if (min > sketch[i][hv[i]]) {
 min = sketch[i][hv[i]];
 }
 }
 if(min > heavy_hitter.count) {
 heavy_hitter.flow = flow;
 heavy_hitter.count = min;
 }
}

33
©2017 Open-NFP

Appendix: algorithm of Bitmap
struct Flow;
uint32_t sketch[N];
unit32_t hash(struct Flow flow);
foreach flow in flowset {
 uint32_t pos = hash(flow);
 sketch[pos] = 1;
}

uint32_t Z = 0;
for(i=0; i<N; i++) {
 if(sketch[i] == 0) {
 Z += 1;
 }
}

The number of unique flows is
estimated as N*ln(N/Z)

	Slide 1
	Add a short slide title here
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

