

Measuring a 25 Gb/s and 40 Gb/s data plane

Christo Kleu Pervaze Akhtar

Contents

• Preliminaries

- Equipment
- Traffic generators
- Test topologies
- Host and VM configuration
 - NUMA Architecture
 - CPU allocation
 - BIOS
 - Host boot settings
 - Interrupt management
- Examples
- Conclusion

Testing Objectives

C Open NFP

Testing objective guides choices. Possible objectives:

- Determine throughput limits of SmartNIC processor
- Measure performance of a VNF
 - product VNF
 - experimental VNF
- Packet size:
 - Small packet performance
 - Large packets
 - Packet mix (IMIX)
- Assess:
 - Best case performance
 - Expected performance in a real deployment
- Measure:
 - Packets per second
 - Throughput
 - Packet drop rate? None, limited, unlimited
 - Latency
 - Jitter
- Minimal equipment cost or limited availability

No "one size" solution to everyone's needs.

Preliminaries - Equipment

- SmartNIC installed in a system.
- Goal is to measure FAST dataplane on the SmartNIC
- System must provide:
 - ARI / SR-IOV
 - Large system RAM. Scale with no. of VMs and VNFs
 - Large number of CPU cores.
 - High clock rate CPUs
- Goal is for the dataplane to be the bottleneck, not host hardware, OS or VNFs

Preliminaries - Traffic generators

- Hardware
 - Ixia
 - Spirent
 - Other high performance hardware generators
- Software
 - DPDK based. High performance. Require sufficient memory to run.
 - Moongen
 - DPDK-pktgen
 - Standard Linux. Simple, lower performance. Must run multiple instances with careful OS and system configuration for valid results
 - Iperf or Iperf3
 - Netperf

Traffic generators - Speed

• Ixia

- 1G to 100G, any packet size
- Throughput, latency, jitter, controlled drops
- Easy to use
- DPDK based generators
 - 15 Mpps per CPU core. (7.5 Gbps of 64 byte packets => 6 CPUs for 40G)
 - Good for 1-10G small packets. We use Ixia for 25G and up.
 - Measures PPS / Gbps. Latency supported with h/w assist from suitable NICs
 - LUA Scriptable
 - Harder to install, medium configuration complexity for high rates
- Iperf / Netperf
 - Throughput (Gbps).
 - Multi-threaded or multi-process operation (16-32 threads or processes, non-linear rate)
 - 1 CPU per thread or process
 - Good for 1-10 Gbps small packets
 - Easy install, more complex configuration for higher rates
 - Affected by OS and kernel version

Contents

G Open NFP

- Preliminaries
 - Equipment
 - Traffic generators

• Test topologies

- Host and VM configuration
 - NUMA Architecture
 - CPU allocation
 - BIOS
 - Host boot settings
 - Interrupt management
- Examples
- Conclusion

Test topologies

- Single DUT (Device Under Test)
 - Port-to-Host-to-Port
 - Port-to-VM-to-Port
 - Host-to-Host
 - VM-to-VM
 - Port-to-Port (*)
 - Port-to-Host (**)
 - Host-to-Port (**)
- Dual DUT (needed for tunneling)
 - Host-to-Host
 - VM-to-VM
- * benchmarking of SmartNIC datapath
- ** benchmarking of unidirectional datapath

Port-to-Host

Port-to-Port

Test topologies - Single DUT

Port-to-Host-to-Port

Port-to-VM-to-Port

Host-to-Host

VM-to-VM

Test topologies - Dual DUT

Host-to-Host

VM-to-VM

Contents

- Preliminaries
 - Equipment
 - Traffic generators
- Test topologies

• Host and VM configuration

- NUMA Architecture
- CPU allocation
- BIOS
- Host boot settings
- Interrupt management
- Examples
- Conclusion

Configuration goals

OpenNFP

- Isolate functional components. Eliminate peturbations
- Use "local" memory
- Eliminate system power management transitions
 - No changes in speed
- Avoid context switches and interruptions in processing
- Minimize handoffs
 - Movements in memory
 - Handoffs from one CPU to another

NUMA Architecture - Introduction

- NUMA topology
- CPU Hyperthread partners
- Memory can be local or remote
- Remote memory is more costly
 - increased latency
 - decreased throughput
- Improve performance:
 - ensure applications are run on specific sets of cores
- Determine the SmartNIC NUMA affinity (used for planning)

CPU interconnect

NUMA Architecture - Example 1

Open NFP

	Machine (63GB)	
 NUMA nodes: 2 Sockets: 2 Cores per socket: 14 Threads per core: 2 CPUs: 48 64GB RAM 32GB RAM per NUMA node NUMA node0 	I I NUMANode P#0 (31GB)	I NUMANode P#1 (31GB) I Socket P#1 I Core P#0 I Core P#1 I I I
 0,2,4, (even) NUMA node1 1,3,5, (odd) 	I Core P#4 I Core P#5 I Core P#9 I I I PU P#8 I I PU P#12 I I PU P#14 I I I I PU P#32 I I PU P#36 I I PU P#38 I	Core P#4 I Core P#5 I Core P#8 I Core P#9 I I PU P#9 I I PU P#11 I PU P#13 I PU P#15 I PU P#33 I I PU P#35 I I PU P#37 I PU P#39
lstopo lscpu numactl	I Core P#10 I Core P#11 I Core P#12 Core P#13 I I PU P#16 I I PU P#18 I I PU P#20 I I PU P#22 I I I PU P#40 I I PU P#42 I I PU P#46 I I I PU P#40 I	Core P#10 Core P#11 Core P#12 Core P#13 PU P#17 PU P#19 PU P#21 PU P#23 PU P#41 PU P#43 PU P#45 PU P#47

compute-02-002:~# lscpu | grep NUMA
NUMA node(s): 2
NUMA node0 CPU(s): 0-9,20-29
NUMA node1 CPU(s): 10-19,30-39

compute-04-003:~# lscpu | grep NUMA
NUMA node(s): 2
NUMA node0 CPU(s):
0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46
NUMA node1 CPU(s):
1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47

CPU affinity and pinning

- **CRITICAL** Do not use the same CPU for more than one task
- Isolate and pin CPUs dedicated for critical tasks
- Pin VMs to unique CPUs
 - vcpupin <domain> [--vcpu <number>] [--cpulist <string>]
- Pin DPDK apps to unique CPUs (or logical cores in VM)
 - use -c <coremap> or --l <corelist> to specify CPUs DPDK app uses

CPU allocation - Example

| Machine (63GB)

LEGEND

- Isolated CPUs
- Host/VM OS CPUs
- VirtIO relay CPUs
- VM CPUs
- VM DPDK app CPUs

NUMANode P#0 (31GB)		NUMANode P#1 (31G	B)]
Socket P#0	1	Socket P#1			
Core P#0 Core P#1 1	Core P#2 Core P#3	Core P#0	Core P#1	l Core P#2	Core P#3
I PU P#0 I I PU P#1 I	I I		PU P#11	PU P#12	
I PU P#20 I I PU P#21 I	I PU P#22 I I PU P#23 I I	I I I I I PU P#30 I	PU P#31	I PU P#32 I	
	·			<u>.</u>	ا لــــــــــــــــــــــــــــــــــــ
Core P#4 Core P#8	Core P#9 Core P#10	Core P#4 	Core P#8 	Core P#9 	Core P#10
PU P#4 PU P#5	PU P#6 PU P#7		PU P#15		PU P#17
I PU P#24 I I I I PU P#25 I	I PU P#26 I I I I PU P#27		PU P#35	I PU P#36 I	I I PU P#37 I I I I L PU P#37 I I I
L	L		LJ	L	۱ ۱
Core P#11 Core P#12		Core P#11	Core P#12		
PU P#8 I I PU P#9 I	Note: SmartNIC local to NUMA Node 0		PU P#19		
PU P#28 PU P#29			I PU P#39 I I		
			LJ		

BIOS settings (1/3)

- **OpenNFP**
- **C-state disabled**. Ensure that the CPUs are always in the C0 (fully operational) state. Each CPU has several power modes and they are collectively called "C-states" or "C-modes.".
- **P-state disabled**. The processor P-state is the capability of running the processor at different voltage and/or frequency levels. Generally, P0 is the highest state resulting in maximum performance, while P1, P2, and so on, will save power but at some penalty to CPU performance.
- Hyper-threading enabled/disabled.
- **Turbo Boost Disabled**. Turbo Boost has a series of dynamic frequency scaling technologies enabling the processor to run above its base operating frequency via dynamic control. Although Turbo Boost (overclocking) would increase the performance, not all cores would be running at the turbo frequency and it would impact the consistency of the performance tests, thus it would not be a real representation of the platform performance.
- System Management Interrupts disabled. Disabling the Processor Power and Utilization Monitoring SMI has a great effect because it generates a processor interrupt eight times a second in G6 and later servers. Disabling the Memory Pre-Failure Notification SMI has a smaller effect because it generates an interrupt at a lower frequency

BIOS settings (2/3)

- Correct setting of BIOS for DUT (w/ SmartNIC) is important, to address:
 - Throughput variations due to CPU power state changes (C-state; P-state)
 - Blips (short duration packet drops) due to interrupts (SMI)
- Example settings (HP) changes settings will vary from BIOS to BIOS
- Power Management
 - o Power Regulator = [Static High Performance] (was "dynamic power savings")
 - Minimum Processor Core Idle C-state = [No C-states] (was C-6)
 - Minimum Package Idle C-state = [No package state] (was C-6)
 - Power Profile = [Max Performance] (was "customer") this ended up setting the above anyway (and graying them out)
- Prevent CPUs from entering power savings modes as transitions cause OS and VM drivers to drop packets.

BIOS settings (3/3)

OpenNFP

- Example settings (HP) changes (cont.)
- SMI System Management Interrupts

```
• Memory pre-failure notification = [disabled] (was enabled)
```

- When enabled, CPU is periodically interrupted, resulting in packet drops when close to throughput capacity.
 - Disable all non-essential SMIs
 - Frequency of SMI varies
 - On an HP DL380 gen9 it is every 60s
 - On gen6,7 it is every hour
 - On gen8 every 5 minutes

Host boot settings - Power Management

Open NFP

- Make changes carefully!
- Power management
 - o intel_idle.max_cstate=0 processor.max_cstate=0 idle=mwait
 intel_pstate=disable
 - idle=mwait C1 will be entered whenever the core is idle irrespective of other settings
 - idle=poll keeps the processing cores in C0 state when used in conjunction with intel_idle.max_cstate=0
- Note: These are in addition to the BIOS settings

Host boot settings - CPU isolation

- CRITICAL shared CPUs yield poor performance
- The isolcpus Linux kernel parameter is used to isolate the cores from the general Linux scheduler
- Plan out CPU allocation, e.g.
 - CPUs should NOT be used for more than one task.
 - CPUs for host OS
 - CPUs for XVIO
 - CPUs for VMs
 - CPUs for guest OS
 - CPUs for VNF or application

Machine (6368)		
I NUMANode PW0 (31GB)		NUMANode P#1 (31GB)
I Socket P#0		i Socket P#1
Core P#8 Core P#1	I Core P#2 I Core P#3 I	Core P#0 Core P#1 Core P#2 Core P#3
I PU P#0 I PU P#1 I	I PU P#2 I I PU P#3 I I	I I I I I PU P#10 I I PU P#11 I I PU P#12 I I I PU P#13 I I
I PU P#20 I PU P#21 I	PU P#22 PU P#23	. I I I I I I I I I I I I I I I I I I I
Core P#4 Core P#8	I Core P#9 I I Core P#10	I Core P#4 Core P#8 Core P#9 Core P#18
PU P#4	PU P#6 PU P#7	I I I PU P#14 I PU P#15 I I PU P#16 I I PU P#17 I I
PU P#24 PU P#25	PU P#26 PU P#27	I PU P#34 I PU P#35 I PU P#36 I PU P#37 I
Core P#11 Core P#12		Core P#11 Core P#12
PU P#8 I I PU P#9 I	Note: SmartNIC local to NUMA Node 0	PU P#18
PU PH28 I PU PH29		PU P#38

Open NFP

Host boot settings - hugepages

- Settings required if hugepages are required by the applications
 - XVIO (Netronome module providing DPDK to virtio acceleration)
 - DPDK applications (e.g. packet generators) in host or VM
- **Hugepages** is a feature that allows the Linux kernel to utilize the multiple page size capabilities of modern hardware architectures.
 - A **page** is the basic unit of virtual memory, with the default page size being 4 KB in the x86 architecture.
- Leave sufficient memory for OS use
 - no longer subject to normal memory allocations
 - Huge Pages are 'pinned' to physical RAM and cannot be swapped/paged out.
- Preference is for 1G hugepages.
 - Each hugepage requires a TLB entry. Smaller hugepages => more TLBs and TLB lookups due to page faults => higher probability of packet drop blips

default_hugepagesz=1G hugepagesz=1G hugepages=224

Interrupt management

- irqbalance keeps all of the IRQ requests from backing up on a single CPU
- manual pinning for performance testing of low latency real-time applications
- **disable** irqbalance (and other affinity management utilities: numad, tuned)
- It can be beneficial to turn off IRQ balancing on the host.
 - IRQ processing will be limited to non-isolated CPUS

service irqbalance stop
/etc/default/irqbalance

• Pin interrupts to non-dataplane CPUs

Interrupt management - Pin IRQs

- Check the IRQ indexes of the port
 - Does the interface support multiple queues?
 - o /proc/interrupts
- IRQ affinity (smp_affinity) specifies the CPU cores that are allowed to execute the ISR for a specific interrupt.
 - Assign interrupt affinity and the application's thread affinity to the same set of CPU cores to allow cache line sharing between the interrupt and application threads.
 - Equally distribute IRQS between available CPUS

	1	ō	0	0	0	0	0	0	0	0	0	0	0	0	0	0	IR-PCI-MSI-edge
i:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		IR-PCI-MSI-edge
exn 1 122173	287		0	0	0	0	8	0		0	0	0	0	θ	8		IR-PCI-MSI-edge
rxtx-0	θ	116361959					0	8		0	0			θ	8		IR-PCI-MSI-edge
rxtx-1	8		116438759	8			8	8		9	8			8	8		IR-PCT-MST-edge
xtx-2	0			114601424													TR.DCT.MCT.ada
ktx-3					1001303783												TO DET MET adapt
ctx-4					109310133												IN-PCI-HII-E0JE
tx-5	0	0	0	0	0	116237276	0	0	0	0	0	0	0	0	0		IR-PCI-MSI-edge
tx-6	0	0	0	0	0	0	114781807	0	0	0	0	0	0	0	D	0	IR-PCI-MSI-edge
tx.7	0	0	0	0	0	0	0	118816672	0	0	0	0	0	0	Ð		IR-PCI-MSI-edge
	θ	0	0	0	0	0	0	0	4765257	0	0	0	0	0	0		IR-PCI-MSI-edge
TX-0	θ		0	0	0	0	8	0		3248927	0	0	0	θ	0		IR-PCI-MSI-edge
etx-9	θ		0	0		0	0	0		0	5788852	0	0	θ	0		IR-PCI-MSI-edge
ctx-10	0		0	0		0	0	0	0	0	0	3555726		0	Ð		IR-PCI-MSI-edge
ctx-11	0		0	0			0	0		0	0		6686873	0	P		IR-PCI-MSI-edge
ctx-12														3475354			TR. DCT. MST. adva
ctx-13															-		
ctx-14	1														3100002		18-PC1-P51-6020
vtv.15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6398160	IR-PCI-MSI-edge

- Pin an IRQ to a core
 - o echo \$IRQ_CPU_LIST > /proc/irq/\$IRQ/smp_affinity_list

Netdevs and interrupts

When using netdevs (often done with simple iperf / netperf test configurations)

- Interrupt management is very important
- RPS receive packet steering (left)
- RFS receive flow steering (supplements RPS) (right)

Interrupt management - VM settings

- Disable IRQ balancing in VM to prevent data processing CPUs from receiving interrupts.
- Pin apps to vcpus
 - Examples for I2fwd dpdk app:
 - 12fwd -c 6 -n 4 -p 3 -T 0 #3vCPUVM
 - 12fwd -c 7 -n 4 -p 7 -T 0 #4vCPUVM
 - Note: "-c <coremap>" tells dpdk app which cores to run on.
 - Note: "-p <PORTMASK>" tells dpdk app which ports to use.

Contents

- Preliminaries
 - Equipment
 - Traffic generators
- Test topologies
- Host and VM configuration
 - NUMA Architecture
 - CPU allocation
 - BIOS
 - Host boot settings
 - Interrupt management

• Examples

Conclusion

Agilio OVS - Example tuning setup (1/5)

Testing goal

- Verify layer 2 forwarding performance of a VNF (entire datapath including virtualization)
- Is the VNF the bottleneck?
- Is the PCI-E bus the bottleneck?
- Is the SmartNIC the bottleneck?
- Is the QSFP the bottleneck?
- Is OVS the bottleneck?

Testing topology

- Host-to-VM-to-Host (Single DUT)
- Traffic generator: Ixia

CPU allocation design

- Host OS
- virtiorelay
- VM00, VM01, VM02, VM03

	Traffic (Privit Generator
	ph/0	ohu1
Smart NIC	Pi	Po
x86 hyperv	isor	
V	Vvi	Vvo
Guest OS	VN	F (Vv)

Agilio OVS - Example tuning setup (2/5)

GOpen**NFP**

lspci -d 19ee:4000

05:00.0 Ethernet controller: Netronome Systems, Inc. Device 4000

```
# cat /sys/bus/pci/drivers/nfp/0000:05:00.0/numa_node
0
```

cat /sys/bus/pci/drivers/nfp/0000:05:00.0/local_cpulist
0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46

# lscpu grep 'NUMA'	
NUMA node(s):	2
NUMA node0 CPU(s):	0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46
NUMA nodel CPU(s):	1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47

Agilio OVS - Example tuning setup (3/5)

CPU allocation design

- Host OS: (0,24), (1,25)
- Isolate all except Host OS
- VirtlO relay: (2,26), (4, 28)
- VM00: (8, 32), (10, 34)
- VM01: (16, 40), (18, 42)
- VM02: (12, 36), (14, 38)
- VM03: (20, 44), (22, 46)

VM specifications

- 4x CPUs
- 4GB RAM
- 2x VirtIO interfaces
- DPDK I2fwd app

Machine (63GB)	
NUMANode P#0 (31GB)	NUMANode P#1 (31GB)
Socket P#0	Socket P#1
I I Core P#0 I Core P#1 I Core P#2 I Core P#3 I	I Core P#0 I Core P#1 I Core P#2 I Core P#3 I
I I I PU P#0 I I I PU P#2 I I I PU P#4 I I I PU P#6 I I I	I I I I I I I I I I I I I I I I I I I
I I I PU P#24 I I I PU P#26 I I I I PU P#28 I I I PU P#30 I I	I I PU P#25 I I PU P#27 I I PU P#31 I <
Core P#4 Core P#5 Core P#8 Core P#9	Core P#4 Core P#5 Core P#8 Core P#9
PU P#8 PU P#10 PU P#12 PU P#14	I I I PU P#9 I I PU P#11 I I PU P#13 I I PU P#15 I I
PU P#32 I I I PU P#34 I I I PU P#36 I I I I PU P#38 I	I I
Core P#10 Core P#11 Core P#12 Core P#13	
PU P#16 PU P#18 PU P#20 PU P#22	I I I PU P#17 I I PU P#19 I I PU P#21 I I PU P#23 I I
PU P#40 PU P#42 PU P#44 PU P#46	I I PU P#41 I PU P#43 I I PU P#45 I I PU P#47 I I

Agilio OVS - Example tuning setup (4/5)

Host configuration:

SDN_VIRTIORELAY_PARAM="--cpus=2,26,4,28 --virtio-cpu=0:2 --virtio-cpu=1:26 --virtio-cpu=2:2 --virtio-cpu=3:26 --virtio-cpu=4:4 --virtio-cpu=5:28 --virtio-cpu=6:4 --virtio-cpu=7:28 <<snippet>>"

cat /proc/cmdline

intel_iommu=on iommu=pt hugepagesz=2M hugepages=16384 default_hugepagesz=2M hugepagesz=1G hugepages=8 isolcpus=2-23,26-47 intel_idle.max_cstate=0 processor.max_cstate=0 idle=mwait intel_pstate=disable

VM configuration:

service irqbalance off

DPDK applications inside VM:

./12fwd -1 2-3 -n 4 - -p 3 -T 0

NEMANORE PHD (3358)			1	RMRHole INI (3	100)		
Socket PMB		_		Sochet NS			
Care PMB Care PMI	Carle PRZ	Core PE3		Care MB	Core MS	Care M2	Care PES
PJ PM2 PJ PM2	RI PH	RU PN6		PERS	PI M3	PI PIS	P1 P47
PU PH2N	PU PH28	PU PHON		PI 1425	PI M27	P1 P420	PU PHOS
Care INA Care INS	Core PM8	Core PM9		Core NIS	Core NS	Core N48	Care PM9
PU PAS	PU 19812	PU P#34		PI N9	PI N13	PI N03	PU P03
P2 P832 1 1 1 1 P3 P834	PU PEIS	PU PELA		PR 1933	PS M35	P1 P02	P1 P230
							_
Care P#18 Care P#11	Core 9#12	Core P#13		Core P#LD	Core PH11	Core PH12	Core 9413
PU PALE	PU PH28	PU PH22		PLND	PI N19	PI PI2	P1 P423
ALCOHOL	The second second	A DUMPER	18 18	(THE REAL OF			I COLONY

Agilio OVS - Example tuning setup (5/5)

Frame Rate [Mpps]

Use Case

- Agilio OVS
- Agilio CX 1x40GbE SmartNIC
- SR-IOV
- External Traffic Generator: Ixia
- VM application: I2fwd

Agilio CX 1x40GbE SmartNIC - Port-to-Hostto-Port - Combined Throughput (RX+TX)

Contents

Open NFP

- Preliminaries
 - Equipment
 - Traffic generators
- Test topologies
- Host and VM configuration
 - NUMA Architecture
 - CPU allocation
 - BIOS
 - Host boot settings
 - Interrupt management
- Examples
- Conclusion

Conclusion

- What component are you trying to measure? What measurements needed?
- Data rate may dictate equipment and test bed configuration
 - 1G easy
 - o ...
 - 100G hard
- Plan and provision test bed
- Isolate components from each other, and from external interference
 - Very important!
 - Partition and isolate CPUs
 - Turn off power management
 - Allocate memory
 - Eliminate extraneous interrupts, or steer to non data path CPUs

See also

Open NFP

- 1. <u>Configuring HP ProLiant Servers for low-latency applications</u>
 - a. https://h50146.www5.hpe.com/products/software/oe/linux/mainstream/support/whitepaper/p dfs/c01804533-2014-may.pdf
- 2. Red Hat Performance Tuning Guide
 - a. <u>https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/P</u> <u>erformance_Tuning_Guide/</u>
- 3. Performance tuning from FD.io project
 - a. https://wiki.fd.io/view/VPP/How_To_Optimize_Performance_(System_Tuning)
- 4. NUMA Best Practices for Dell PowerEdge 12th Generation Servers
 - a. <u>http://en.community.dell.com/techcenter/extras/m/white_papers/20266946</u>

Reference and Backup slides

• More detailed slides, for reference

Test topologies - Port-to-Host-to-Port CropenNFP

Single DUT

- L2 or L3 forwarding of packets between ports
- Ixia or other hardware traffic generator
- Host or VM based VNF
 - Less complex and less overheads with host VNF
 - More faithful to real use cases with VM
- Choice of VNF. Examples:
 - Simple: I2fwd, linux bridge
 - Real application: Snort, DPI, Caching
- What do you want to measure?
 - SmartNIC dataplane
 - Will need to ensure host OS, VM and VNF are not the bottlenecks
 - VNF
 - Usually easier to hit VNF performance limits.

Test topologies - Port-to-VM-to-Port

Single DUT

- L2 or L3 forwarding of packets between ports
- Ixia or other hardware traffic generator
- Host or VM based VNF
 - Less complex and less overheads with host VNF
 - More faithful to real use cases with VM
- Choice of VNF. Examples:
 - Simple: I2fwd, linux bridge
 - Real application: Snort, DPI, Caching
- What do you want to measure?
 - SmartNIC dataplane
 - Will need to ensure host OS, VM and VNF are not the bottlenecks
 - VNF
 - Usually easier to hit VNF performance limits.

Open NFP

Test topologies - Host-to-Host

Single DUT

- No hardware traffic generator required.
- Single host with SmartNIC
- Use your choice of software traffic generator
 - Moongen (DPDK based)
 - DPDK-pktgen
 - Netperf
 - iperf
- Traffic generator will greatly affect configuration
 - DPDK based generators offer high performance with sufficient vCPUs and memory
 - Netperf/iperf offers simplicity but low performance. Must run multiple instances for useful results.
- Direct connect or switch between SmartNICs
- Less desirable than using a hardware based traffic generator configuration, but much more available

Test topologies - VM-to-VM

Single DUT

- No hardware traffic generator required.
- Single host with SmartNIC, 2 or more VMs
- Less desirable than using a hardware based traffic generator configuration, but much more available
- Use your choice of software traffic generator
 - Moongen (DPDK based)
 - DPDK-pktgen
 - Netperf
 - $\circ \quad \text{ iperf} \quad$
- Traffic generator will greatly affect configuration
 - DPDK based generators offer high performance with sufficient vCPUs and memory
 - Netperf offers simplicity but low performance. Must run multiple instances for useful results.
- Resource allocation and isolation essential (host OS, VMs, traffic generators) for valid results

Test topologies - Port-to-Port

Single DUT

- Useful for *direct* SmartNIC benchmarking purposes
 - Traffic does not pass PCIe bus
 - No host optimisation necessary
 - Host resources does not play a factor
 - Results without VNFs
- External traffic generator required (hardware or software)
- Can be achieved in a number of ways
 - Directly programming rules (wire application)
 - Priming flows (offload functionality)

/opt/netronome/bin/ovs-ctl configure wire from sdn_p0 to sdn_p1
/opt/netronome/bin/ovs-ctl configure wire from sdn_p1 to sdn_p0

Test topologies - Host-to-Host

Dual DUT

- 2 hosts connected via a switch.
- No VMs
- Traffic generators
 - Moongen
 - DPDK-pktgen
 - Netperf / iperf
- Physical port speed will be upper throughput limit for large packets.
- Less resource constrained configuration, easier to characterize SmartNIC performance
- Exercises full data path through the SmartNIC

Test Topologies - VM-to-VM

Dual DUT

- Traffic generators in VMs
 - one or more VMs on each host
- Resource allocation and isolation essential for valid results
- Larger number of VMs requires attention to vCPU allocation and NUMA

