
©2016 Open-NFP 1

BPF and XDP Explained

Nic Viljoen

©2017 Open-NFP 2

Objectives of the Webinar

Give user a basic understanding of the architecture of eBPF
▪ What is it
▪ The programming model
▪ The kernel hooks

Give user a basic understanding of XDP
▪ What is it/Where is it
▪ How to use it (beginner level!)
▪ How to offload it

©2016 Open-NFP 3

What is eBPF?

eBPF is a simple way to extend the functionality of the kernel
at runtime
▪ Effectively a small kernel based machine
▪ 10 64bit registers
▪ 512 byte stack
▪ Data structures known as maps (unlimited size)
▪ 4K BPF instructions (Bytecode)
▪ Verifier to ensure kernel safe
▪ no loops, not more than 4K insns, not more than 64 maps etc…
▪ Can be JITed to ensure maximum performance

©2016 Open-NFP 4

Used Within Hyperscale-Not a Toy!

Those who have publically stated they are using BPF or are
planning to use BPF include
▪ Facebook-Load Balancing, Security
▪ Netflix-Network Monitoring
▪ Cilium Project
▪ Cloudflare-Security
▪ OVS-Virtual Switching

Due to its upstream safety and kernel support BPF
provides a safe, flexible and scalable networking tool

©2016 Open-NFP 5

The Programming Model

LLVM is used to compile from
supported languages
▪ C
▪ Go
▪ P4

When Programs are loaded
▪ Verifier is called-ensure safety
▪ Program is JITed-ensure perf
▪ Can also be offloaded
▪ nfp_bpf_jit upstream

LL VM

NFP

verifier.c

bpf_prog.go

bpf_prog.elf

bpf syscall

USER

JIT nfp_bfp_jit.c

Host CPU

KERNEL

HARDWARE

bpf_prog.p4
bpf_prog.c

©2016 Open-NFP 6

Maps-What They Are

Maps are key value stores
▪ Can be accessed from kernel or user space
▪ Used for interaction between kernel and user space programs

Number of different types of maps
▪ Used for interaction between kernel and user space programs

bpf_user.c

bpf_kern.c

Map

©2017 Open-NFP 7

Maps-How to use them

Creating Maps
▪ Option 1: create map with syscall
▪ bpf(BPF_MAP_CREATE, &bpf_attr, sizeof(bpf_attr))
▪ Option 2: define a struct bpf_map_def with an elf section

__attribute__ SEC(“maps”)-also uses syscall!
Option 1 Option 2

THIS IS AN OVERSIMPLIFICATION

©2017 Open-NFP 8

eBPF Bytecode: Quick Overview

eBPF Bytecode: op:8, dst_reg:4, src_reg:4, off:16, imm:32
▪ op code is divided into the sections
▪ Operation code (4bits) e.g BPF_MOV, BPF_JNE
▪ Source bit (1 bit) BPF_X (use src_reg and dst_reg) or BPF_K

(use dst_reg and 32 bit imm)
▪ instruction class (3 bits) e.g BPF_ALU, BPF_ALU64, BPF_JMP

▪ BPF_MOV | BPF_X | BPF_ALU64, 0x6, 0x1, 0x0000, 0x00000000
▪ Move contents of register 1 to register 6

▪ BPF_JNE | BPF_K | BPF_JMP, 0x1, 0x0, 0x0011, 0x00008100
▪ Jump 11 insns forward-can also jump backwards-if contents of

register 1 is not equal to 0x00008100

©2017 Open-NFP 9

BPF Kernel Hooks

Many hooks with different purposes
▪ kprobes
▪ socket filters-tcpdump-old school!
▪ seccomp
▪ netfilter (new)
▪ TC
▪ XDP(no skb-super fast!)

XDP will be our focus for the rest of this talk

©2017 Open-NFP 10

XDP

BPF hook in the driver
▪ Allows for high speed processing before skb is attached to packet
▪ Currently 4 return codes: XDP_ABORT, XDP_DROP, XDP_PASS,

XDP_TX
▪ XDP_REDIRECT in the pipeline
▪ Usecases include DDoS protection and load balancing
▪ Includes maximum of 256 bytes of prepend
▪ Metadata is just pointers to start of packet and end

©2017 Open-NFP 11

Program Example (xdp1_kern.c)

Simple drop example
▪ Note the use of standard header infrastructure
▪ Associated user space program maintaining a set of counters
▪ I am not going to go through line by line-for more detail check out

Andy and Jesper’s awesome tutorial-in links
▪ Will come back to this example later on…

This can be found in the recent (4.8+) kernels at
linux/samples/bpf

©2017 Open-NFP 12

Optimizing XDP

A simple checklist-not comprehensive!
▪ Ensure BPF JIT is enabled
▪ Pin queues to interfaces
▪ Set ringsize to an optimal level for your NIC and application
▪ To gain some idea of your NIC’s driver based XDP performance

check simple XDP_DROP and XDP_TX programs
▪ Many people use single core performance as a reasonable

benchmark
▪ To do this use the ethtool -X command
▪ You will NOT get the simple program performance if you build

something complex (Duh)

©2017 Open-NFP 13

Offloading XDP

Netronome have upstreamed the initial version of the
nfp_bpf_jit
▪ More to come!

©2017 Open-NFP 14

Offload Architecture

user space

kernel space
BPF syscall

● program
● type (sk filter, kprobe, cls, xdp)
● license
● ...

verifier

fd

host JIT

tc

TC
cls_bpf

modification

XDP
ctrl

offload
object

fd, skip_* flags

verification

fd, skip_* flags

driver

RX TXXDP
ndo

setup
tc

HW JIT /
translator

stats
&

maps

BPF
prog

©2017 Open-NFP 15

References

Kernel Docs: https://www.kernel.org/doc/Documentation/networking/filter.txt
Initial XDP Presentation: https://github.com/iovisor/bpf-docs/blob/master/
Express_Data_Path.pdf
More Docs: http://prototype-kernel.readthedocs.io/en/latest/README.html
Andy and Jesper’s Talk: https://netdevconf.org/2.1/slides/apr7/gospodarek-
Netdev2.1-XDP-for-the-Rest-of-Us_Final.pdf
Reading List: https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/
Search: google.com :)

https://www.kernel.org/doc/Documentation/networking/filter.txt
https://github.com/iovisor/bpf-docs/blob/master/Express_Data_Path.pdf
http://prototype-kernel.readthedocs.io/en/latest/README.html
https://netdevconf.org/2.1/slides/apr7/gospodarek-Netdev2.1-XDP-for-the-Rest-of-Us_Final.pdf
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/
http://google.com

©2016 Open-NFP 16

ANY QUESTIONS?
Thanks!

