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Networks are becoming faster
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...but software packet processing is slow

Recv+send TCP stack processing time (2.2 GHz)
▪ Linux: 3.5µs
▪ Kernel bypass: ~1µs

Single core performance has stalled
Parallelize? Assuming 1µs over 100Gb/s, excluding Amdahl‘s law:
▪ 64B packets => 200 cores
▪ 1KB packets => 14 cores

Many cloud apps dominated by packet processing
▪ Key-value storage, real-time analytics, intrusion detection, file service, ...
▪ All rely on small messages: latency & throughput equally important
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What are the alternatives?
RDMA
▪ Bypasses server software entirely
▪ Not well matched to client/server processing (security, two-sided for RPC)

Full application offload to NIC (FPGA, etc.)
▪ Application now at slower hardware-development speed
▪ Difficult to change once deployed

Fixed-function offloads (segmentation, checksums, RSS)
▪ Good start!
▪ Too rigid for today’s complex server & network architecture (next slide)

Flexible function offload to NIC (NFP, FlexNIC, etc.)
▪ Break down functions (eg., RSS) and provide API for software flexibility
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Fixed-function offloads are not well integrated

Wasted CPU cycles
▪ Packet parsing and validation repeated in software
▪ Packet formatted for network, not software access
▪ Multiplexing, filtering repeated in software

Poor cache locality, extra synchronization
▪ NIC steers packets to cores by connection
▪ Application locality may not match connection
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A more flexible NIC can help

With multi-core, NIC needs to pick destination core
▪ The “right” core is application specific

NIC is perfectly situated – sees all traffic
▪ Can scalably preprocess packets according to software needs
▪ Can scalably forward packets among host CPUs and network

With kernel-bypass, only NIC can enforce OS policy
▪ Need flexible NIC mechanisms, or go back into kernel
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Talk Outline

• Motivation
• FlexNIC model

• Experience with Agilio-CX as prototyping platform
• Accelerating packet-oriented networking (UDP, DCCP)

• Key-value store
• Real-time analytics
• Network Intrusion Detection

• WiP: Accelerating stream-oriented networking (TCP)
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FLEXNIC MODEL
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FlexNIC: A Model for Integrated NIC/SW Processing
[ASPLOS’16]

• Implementable at Tbps line rate & low cost

Match+action pipeline:

Action	ALU

Match	Table

Parser

M+A	Stage	1 M+A	2
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Extracted	
Header	Fields

Packet

Modified	Fields
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Match+Action Programs

Supports: Does not support:

Match:
IF udp.port ==	kvs

Action:
core	=	HASH(kvs.key)	%	ncores
DMA hash,	kvs TO Cores[core]

Loops
Complex calculations
Keeping large state

Steer packet
Calculate hash/Xsum
Initiate DMA operations
Trigger reply packet
Modify packets
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FlexNIC: M+A for NICs

Efficient application level processing in the NIC
▪ Improve locality by steering to cores based on app criteria
▪ Transform packets for efficient processing in SW
▪ DMA directly into and out of application data structures
▪ Send acknowledgements on NIC

Ingress	
Pipeline

Egress	
Pipeline

DMA	
Pipeline

Queues
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Netronome Agilio-CX

We use Agilio-CX to prototype FlexNIC
• Implement M&A programs in P4
• Run on NIC

Our experience with Agilio-CX:
▪ Improve locality by steering to cores based on app criteria
▪ Transform packets for efficient processing in SW
▪ DMA directly into and out of application data structures
▪ Send acknowledgements on NIC

Dev
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ACCELERATING PACKET-
ORIENTED NETWORKING
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Example: Key-Value Store
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Key-based Steering
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Match:
IF udp.port ==	kvs
Action:
core	=	HASH(kvs.key)	%	N
DMA hash,	kvs TO Cores[core]

• No	locks	needed
• Higher	cache	utilization
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Custom DMA

DMA to application-level data structures
Requires packet validation and transformation

Item	Log

Event	Queue
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Evaluation of the Model

• Measure impact on application performance
• Key-based steering: Use NIC
• Custom DMA: Software emulation of M&A pipeline

• Workload: 100k 32B keys, 64B values, 90% GET
• 6 Core Sandy Bridge Xeon 2.2GHz, 2x10G links
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Key-based steering

• Better scalability
▪ PCIe is bottleneck for 4+ cores

• 45% higher throughput
• Processing time reduced to 310ns
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Real-time Analytics System

(De-)Multiplexing threads are performance bottleneck
• 2 CPUs required for 10 Gb/s => 20 CPUs for 100 Gb/s
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Real-time Analytics System

Offload (de)multiplexing and ACK generation to FlexNIC
• No CPUs needed => Energy-efficiency
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Performance Evaluation
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• Cluster	of	3	machines
• Determine	Top-n	Twitter	posters	(real	trace)
• Measure	attainable	throughput
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Network Intrusion Detection

Snort sniffs packets and analyzes them
• Parallelized by running multiple instances
• Status quo: Receive-side scaling

FlexNIC:
• Analyze rules loaded into Snort
• Partition rules among cores to maximize caching
• Fine-grained steering to cores

Result: 1.6x higher throughput, 30% fewer cache misses
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ACCELERATING STREAM-
ORIENTED NETWORKING
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Ongoing work: Stream protocols

Full TCP processing is too complex for M&A processing
▪ Significant connection state required
▪ Tricky edge cases: reordering, drops
▪ Complicated algorithms for congestion control

But the common case is simpler: it can be offloaded
▪ Reduces the critical path in software

Opportunity: Enforce correct protocol onto untrusted app
▪ Focus: congestion control
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FlexTCP ideas

Safety critical & common processing on NIC
▪ Includes filtering, validating ACKs, enforcing rate limits

Handle all non-common cases in software
▪ E.g. packet drops, re-ordering, timeouts, …

Requires small per-flow state
▪ 64 bytes (SEQ/ACK, queues, rate-limit, …)
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FlexTCP overview
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Flexible congestion control offload
NIC enforces per-flow rate limits set by trusted kernel
▪ Flexibility to choose congestion control

Example: DCTCP
Common-case processing on NIC
▪ Echo ECN marks in generated ACK
▪ Track fraction of ECN marked packets per flow

Kernel implements control policy (DCTCP)
▪ Use NIC-reported fraction of packets that are ECN marked
▪ Adapt rate limit according to DCTCP protocol

Result: Indistinguishable from pure software implementations
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FlexTCP overhead evaluation

• We implemented FlexTCP in P4
• Run on Agilio-CX with null application
• Compare throughput to basic NIC (wiretest)
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Summary

Networks are becoming faster, CPUs are not
▪ Server applications need to keep up
▪ Fast I/O requires efficient I/O path to application

Flexible offloads can eliminate inefficiencies
▪ Application control over where packets are processed
▪ Efficient steering, validation, transformation

Case studies: Key-value store, real-time analytics, IDS
▪ Up to 2.5x throughput & latency improvement vs. kernel-bypass
▪ Vastly more energy-efficient (no CPUs for packet processing)


