
1©2017 Open-NFP

Accelerating Networked Applications 
with Flexible Packet Processing

Antoine	Kaufmann,		Naveen	Kr.	Sharma,
Thomas	Anderson,		Arvind	Krishnamurthy

Timothy	Stamler, Simon	Peter

University	of	Washington The University	of	Texas	at	Austin



2©2017 Open-NFP

Networks are becoming faster

100	MbE

1	GbE

10	GbE

40	GbE
100	GbE

400	GbE

100	M

1	G

10	G

100	G

1	T

1990 1995 2000 2005 2010 2015 2020

Et
he

rn
et
	B
an
dw

id
th
	[b

its
/s
]

Year	of	Standard	Release

5ns	inter-arrival	time	for	
64B	packets	at	100Gbps



3©2017 Open-NFP

...but software packet processing is slow

Recv+send TCP stack processing time (2.2 GHz)
▪ Linux: 3.5µs
▪ Kernel bypass: ~1µs

Single core performance has stalled
Parallelize? Assuming 1µs over 100Gb/s, excluding Amdahl‘s law:
▪ 64B packets => 200 cores
▪ 1KB packets => 14 cores

Many cloud apps dominated by packet processing
▪ Key-value storage, real-time analytics, intrusion detection, file service, ...
▪ All rely on small messages: latency & throughput equally important



4©2017 Open-NFP

What are the alternatives?
RDMA
▪ Bypasses server software entirely
▪ Not well matched to client/server processing (security, two-sided for RPC)

Full application offload to NIC (FPGA, etc.)
▪ Application now at slower hardware-development speed
▪ Difficult to change once deployed

Fixed-function offloads (segmentation, checksums, RSS)
▪ Good start!
▪ Too rigid for today’s complex server & network architecture (next slide)

Flexible function offload to NIC (NFP, FlexNIC, etc.)
▪ Break down functions (eg., RSS) and provide API for software flexibility



5©2017 Open-NFP

Fixed-function offloads are not well integrated

Wasted CPU cycles
▪ Packet parsing and validation repeated in software
▪ Packet formatted for network, not software access
▪ Multiplexing, filtering repeated in software

Poor cache locality, extra synchronization
▪ NIC steers packets to cores by connection
▪ Application locality may not match connection



6©2017 Open-NFP

A more flexible NIC can help

With multi-core, NIC needs to pick destination core
▪ The “right” core is application specific

NIC is perfectly situated – sees all traffic
▪ Can scalably preprocess packets according to software needs
▪ Can scalably forward packets among host CPUs and network

With kernel-bypass, only NIC can enforce OS policy
▪ Need flexible NIC mechanisms, or go back into kernel



7©2017 Open-NFP

Talk Outline

• Motivation
• FlexNIC model

• Experience with Agilio-CX as prototyping platform
• Accelerating packet-oriented networking (UDP, DCCP)

• Key-value store
• Real-time analytics
• Network Intrusion Detection

• WiP: Accelerating stream-oriented networking (TCP)



8©2017 Open-NFP

FLEXNIC MODEL



9©2017 Open-NFP

FlexNIC: A Model for Integrated NIC/SW Processing
[ASPLOS’16]

• Implementable at Tbps line rate & low cost

Match+action pipeline:

Action	ALU

Match	Table

Parser

M+A	Stage	1 M+A	2

.	.	.

Extracted	
Header	Fields

Packet

Modified	Fields



10©2017 Open-NFP

Match+Action Programs

Supports: Does not support:

Match:
IF udp.port ==	kvs

Action:
core	=	HASH(kvs.key)	%	ncores
DMA hash,	kvs TO Cores[core]

Loops
Complex calculations
Keeping large state

Steer packet
Calculate hash/Xsum
Initiate DMA operations
Trigger reply packet
Modify packets



11©2017 Open-NFP

FlexNIC: M+A for NICs

Efficient application level processing in the NIC
▪ Improve locality by steering to cores based on app criteria
▪ Transform packets for efficient processing in SW
▪ DMA directly into and out of application data structures
▪ Send acknowledgements on NIC

Ingress	
Pipeline

Egress	
Pipeline

DMA	
Pipeline

Queues



12©2017 Open-NFP

Netronome Agilio-CX

We use Agilio-CX to prototype FlexNIC
• Implement M&A programs in P4
• Run on NIC

Our experience with Agilio-CX:
▪ Improve locality by steering to cores based on app criteria
▪ Transform packets for efficient processing in SW
▪ DMA directly into and out of application data structures
▪ Send acknowledgements on NIC

Dev



13©2017 Open-NFP

ACCELERATING PACKET-
ORIENTED NETWORKING



14©2017 Open-NFP

Example: Key-Value Store

4

7

Hash	Table

Core	1

Core	2NIC

Receive-side	scaling:
core	=	hash(connection)	%	N

Client	1
K	= 3,	4

Client	2
K	=	4,	7

Client	3
K	=	7,	8

• Lock	contention
• Poor	cache	utilization

4,	7

4,	7



15©2017 Open-NFP

Key-based Steering

Core	1

Core	2NIC

3

4

7

8

Hash	Table

Client	1
K	=	3,	4

Client	2
K	=	4,	7

Client	3
K	=	7,	8

Match:
IF udp.port ==	kvs
Action:
core	=	HASH(kvs.key)	%	N
DMA hash,	kvs TO Cores[core]

• No	locks	needed
• Higher	cache	utilization



16©2017 Open-NFP

Custom DMA

DMA to application-level data structures
Requires packet validation and transformation

Item	Log

Event	Queue

G

Item	1 Item	
2

G S

GET,	Client	ID,	Hash,	KeySET,	Client	ID,	Item	
Pointer



17©2017 Open-NFP

Evaluation of the Model

• Measure impact on application performance
• Key-based steering: Use NIC
• Custom DMA: Software emulation of M&A pipeline

• Workload: 100k 32B keys, 64B values, 90% GET
• 6 Core Sandy Bridge Xeon 2.2GHz, 2x10G links



18©2017 Open-NFP

Key-based steering

• Better scalability
▪ PCIe is bottleneck for 4+ cores

• 45% higher throughput
• Processing time reduced to 310ns

0

2

4

6

8

1 2 3 4 5Th
ro
ug
hp

ut
	[m

	o
p/
s]

Number	of	CPU	Cores

FlexKVS/RSS

FlexKVS/Key

FlexKVS/Linux

Memcached
Custom	DMA	reduces	time	to	200ns



19©2017 Open-NFP

Real-time Analytics System

(De-)Multiplexing threads are performance bottleneck
• 2 CPUs required for 10 Gb/s => 20 CPUs for 100 Gb/s

NIC

Software

Rx	
Queue

Tx	
Queue

Count

Count

Rank

Rank

Demux
ACKs Mux



20©2017 Open-NFP

Real-time Analytics System

Offload (de)multiplexing and ACK generation to FlexNIC
• No CPUs needed => Energy-efficiency

NIC

Software

Rx	
Queue

Tx	
Queue

Count

Count

Rank

Rank

Demux
ACKs Mux



21©2017 Open-NFP

Performance Evaluation

0

2

4

6

Balanced Grouped

Th
ro
ug
hp

ut
[m

	tu
pl
es
/s
]

Apache	Storm
FlexStorm/Linux
FlexStorm/Bypass
FlexStorm/FlexNIC.5x

1x

2x

.3x
1x

2.5x

• Cluster	of	3	machines
• Determine	Top-n	Twitter	posters	(real	trace)
• Measure	attainable	throughput



22©2017 Open-NFP

Network Intrusion Detection

Snort sniffs packets and analyzes them
• Parallelized by running multiple instances
• Status quo: Receive-side scaling

FlexNIC:
• Analyze rules loaded into Snort
• Partition rules among cores to maximize caching
• Fine-grained steering to cores

Result: 1.6x higher throughput, 30% fewer cache misses



23©2017 Open-NFP

ACCELERATING STREAM-
ORIENTED NETWORKING



24©2017 Open-NFP

Ongoing work: Stream protocols

Full TCP processing is too complex for M&A processing
▪ Significant connection state required
▪ Tricky edge cases: reordering, drops
▪ Complicated algorithms for congestion control

But the common case is simpler: it can be offloaded
▪ Reduces the critical path in software

Opportunity: Enforce correct protocol onto untrusted app
▪ Focus: congestion control



25©2017 Open-NFP

FlexTCP ideas

Safety critical & common processing on NIC
▪ Includes filtering, validating ACKs, enforcing rate limits

Handle all non-common cases in software
▪ E.g. packet drops, re-ordering, timeouts, …

Requires small per-flow state
▪ 64 bytes (SEQ/ACK, queues, rate-limit, …)



26©2017 Open-NFP

FlexTCP overview



27©2017 Open-NFP

Flexible congestion control offload
NIC enforces per-flow rate limits set by trusted kernel
▪ Flexibility to choose congestion control

Example: DCTCP
Common-case processing on NIC
▪ Echo ECN marks in generated ACK
▪ Track fraction of ECN marked packets per flow

Kernel implements control policy (DCTCP)
▪ Use NIC-reported fraction of packets that are ECN marked
▪ Adapt rate limit according to DCTCP protocol

Result: Indistinguishable from pure software implementations



28©2017 Open-NFP

FlexTCP overhead evaluation

• We implemented FlexTCP in P4
• Run on Agilio-CX with null application
• Compare throughput to basic NIC (wiretest)

0

10

20

30

40

256 512 1024 1500

Th
ro
ug
hp

ut
	[G

b/
s]

Packet	size	[Bytes]

Basic

Full



29©2017 Open-NFP

Summary

Networks are becoming faster, CPUs are not
▪ Server applications need to keep up
▪ Fast I/O requires efficient I/O path to application

Flexible offloads can eliminate inefficiencies
▪ Application control over where packets are processed
▪ Efficient steering, validation, transformation

Case studies: Key-value store, real-time analytics, IDS
▪ Up to 2.5x throughput & latency improvement vs. kernel-bypass
▪ Vastly more energy-efficient (no CPUs for packet processing)


