
1©2016 Open-NFP

Software Development Kit –
P4 and C Development Toolchain

Dataplane Acceleration Developer Day (DXDD)
Nov. 2016

2©2016 Open-NFP

Agenda

● Software Development Kit (SDK) Overview

● Toolchain Theory of Operation

● Debugging using Simulator and Hardware (SmartNIC)

3©2016 Open-NFP

Software Development Kit (SDK) Overview

● Integrated Development Environment, running on Windows
(natively, in a VM, or in WINE)

● Complete package for SmartNIC application development:
edit, build, debug, optimize …

● Supports data plane programming using P4 and C

● Supports multiple development platforms

✔ Cycle accurate simulator for SmartNIC's Network Flow Processor
✔ Enables remote debugging of Agilio SmartNICs in Linux servers

● Includes documentation (in PDF and HTML formats)

4©2016 Open-NFP

SDK Components

● Programmer
Studio (GUI)

● Assembler
● C Compiler
● P4 Compiler
● Linker/Loader
● Simulator
● C Scripting -

Cling
● Standard Library
● Run Time

Environment

Programmer Studio – Integrated Development Environment

P4 Compiler

Standard
Libraries

C &
Assembler

C Scripting

Assembler C Compiler

Linker

Loader

Simulator Hardware Debug

Hardware

RTE

5©2016 Open-NFP

Programmer Studio IDE Components

● Integrated Development
Environment (IDE)

● Ability to manage ongoing
development by organizing
settings and files into projects

● Project types
– C (Standard / Debug Only)
– P4

● Two sets of toolbar and docking
configurations:

– Debug Mode
– Build/Edit Mode

6©2016 Open-NFP

Programmer Studio Views

● The Project Workspace is a
dockable window where you
access and modify project files,
view threads during debugging,
and view documentation in PDF
and HTML format, using tabs:

– FileView

– ThreadView

– InfoView

InfoView

FileView

ThreadView

7©2016 Open-NFP

C Compiler Details

– Accepts standard C, augmented with pragmas and specifiers, e.g.
__declspec() to explicity specify memory types (DRAM vs. on-chip
memory) and properties (e.g. thread local or global).

– Accepts in-line assembly via __asm{ } statement.

– Optimizes program in “whole program mode”, in-lining functions and
specializing data types based on the context in which they are used.

– Generates a .list file (effectively a binary code object file) for each
microengine (flow processing core).

8©2016 Open-NFP

P4 Compilation Details
● Front end passes take P4 source and

compiles it to Intermediate Representation
(IR) in YAML format

– Languages other than P4 can be
supported in future

– IR standardized at opensourcesdn.org

● IR can be displayed as graphs (parser,
ingress control flow, egress control flow)

● Back end passes compile IR to firmware
(native code for SmartNIC – ELF file)

● Code leverages Data Plane Libraries provided
by Netronome for microflow caching, packet
classification, PCIe and network I/O, packet
re-ordering etc.

P4 Front End
Data Plane

Libraries

Back End

app.p4

app.yml

app.nffw

9©2016 Open-NFP

Standard Libraries / Components

● C libraries are supplied to enable convenient access to the Network Flow
Processor's features, for example packet I/O, buffer allocation/freeing, and
function accelerators (e.g. ring put/get, statistics, load balancing, hashing,
metering, individual lookup operations, etc.)

● Larger Standard Components deliver functionality like packet reordering,
PCIe NIC functionality, flow caching, algorithmic classification, etc.

10©2016 Open-NFP

Linker / Loader Details

Loader operations:
● Read NFFW file (object file) headers
● Verify NFFW file (object file) is valid for target
● Perform relocation and resolve symbols (including

import variables)
● Attempt clean interruption/stopping of hardware

engines to be loaded, or reset the islands
● Set and verify CSRs
● Load memory sections (excluding code sections)
● Load initialization code sections and execute them
● Load code sections
● Trigger “new firmware” event on host

11©2016 Open-NFP

Debugger Support

The Programmer Studio IDE supports debugging in three different
configurations:

● Local simulation (default): Programmer Studio and the Network Flow
Processor simulator both run on the same Microsoft Windows platform.

● Remote simulation: Programmer Studio runs on Windows, communicating
over a network with a separate Network Flow Processor simulator process
(running on Windows or Linux).

● Hardware: Programmer Studio runs on Windows, communicating over a
network with a Linux server containing a SmartNIC.

12©2016 Open-NFP

Debugging Features – Simulation / Hardware

● More debugging features available
when simulating NFP than running
application on hardware

– Execution stage marking in thread
windows

– Code execution coverage

– Command execution history

● Running application is faster on
hardware than on simulator

13©2016 Open-NFP

Network Flow Processor Simulator

● Provides cycle-accurate simulation
for all data-plane chip functionality

● Advanced simulation, profiling, and
debugging capabilities within IDE

● Rapid prototyping and intuitive
optimization of user applications

● Support for parallel software and
hardware engineering efforts

14©2016 Open-NFP

Simulator – History Collection

● Thread history – tracks references that are
generated by execution of instructions

● Queue history – tracks commands issued on
internal buses (to/from function accelerators,
memory, or I/O peripherals)

● History data is collected from:
➢ Event bus
➢ Local CPP (Command Push Pull) bus
➢ DSF CPP (Distributed Switch Fabric CPP)

● Benefits

➢ High level view of microengine execution

➢ Quickly and easily locate performance
bottlenecks and application bugs

This is when ME request bus
access via cmd_req and granted

bus access after arbitration

This is when ME en-queues the
command into ME command FIFO

This is when command de-queued from ME
command FIFO and put on the DSF CPP or
routed to an internal target (at the IMB level)

This is when command received in targeted
island IMB and need to be addressed by the

targeted island. At this point command put into
target island command FIFO

This is when target island processed the command
and response put back on the DSF CPP and on its
way to master island. At this point command is de-

queued from target command FIFO.

This is when signal
received by master island

(ME). At this point ME
consumed the signal

15©2016 Open-NFP

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

