
1 ©2016 Open-NFP

Open-NFP Summer Webinar Series:
Session 4: P4, EBPF And Linux TC Offload

Dinan Gunawardena & Jakub Kicinski -
Netronome
August 24, 2016

2 ©2016 Open-NFP

Open-NFP www.open-nfp.org

Support and grow reusable research in accelerating dataplane network functions processing

Reduce/eliminate the cost and technology barriers to research in this space

•  Technologies:

–  P4, eBPF, SDN, OpenFlow, Open vSwitch (OVS) offload
•  Tools:

–  Discounted hardware, development tools, software, cloud access
•  Community:

–  Website (www.open-nfp.org): learning & training materials, active Google group
https://groups.google.com/d/forum/open-nfp, open project descriptions, code repository

•  Learning/Education/Research support:
–  Summer seminar series, P4DevCon conference, Tutorials (P4 Developer Day), research proposal support

for proposals to the NSF, state agencies

Summer seminar series to further progress to our objective. Present applied reusable research.

3 ©2016 Open-NFP

Universities Companies

P4DevCon Attendees/Open-NFP Projects*

*This	does	not	imply	that	these	organiza4ons	endorse	Open-NFP	or	Netronome	

4 ©2016 Open-NFP

Session Agenda
1. Introduction
–  Objectives

2. Overview: The high level model for offload

- What we are offloading – P4 / eBPF

- Overall programmer model for transparent
offload

3. Linux Kernel Infrastructure
–  The Traffic Classifier (TC)

–  eXpress Data Path (XDP)
–  Current eBPF translation on X86/ARM64/PPC64

4. Hardware Intro to NFP (Network Flow
Processor) architecture
–  SmartNICs-Multi Core, Many Core

–  NUMA, Memory Hierarchy

5. Accelerating P4/eBPF in NFP :
Implementation
–  Kernel core infrastructure

–  Map handling in the kernel

–  Translating instructions

–  Basic Map Support

–  Optimizations

6. & 7. Demo; Summary

5 ©2016 Open-NFP

Session Objectives

6 ©2016 Open-NFP

Introduction: Objectives

Understanding how eBPF is relevant to P4

Understanding the support for offload and state of art in the Linux Kernel

The Code
– Understand the structure of a eBPF program

– Gain an insight into how this is translated and executed in hardware

Understanding how the NFP architecture on the Agilio CX enables high
performing, fully programmable network offload
– The Many Core architecture and its advantages

7 ©2016 Open-NFP

Overview: High level model for offload

•  What we are offloading – P4 / eBPF
•  Overall programmer model for

transparent offload

8 ©2016 Open-NFP

P4 and eBPF

What are P4 and eBPF?

Domain specific languages for specifying forwarding
behaviour of the data plane of network components

P4 - Programming Protocol-Independent Packet
Processors

•  Header format description

•  Parse Graphs (FSM)

•  Tables (<keys,actions>)

•  Actions manipulate packet header/metadata

•  Control flow – an imperative program, describing
sequence of data dependent match/actions

eBPF – Extended Berkley Packet Filters

•  Low level (machine code like) language

•  Code executed by a VM (restricted memory, no
sleeps/locks, limited API to kernel)in the Kernel (TC)

•  Code injected into netfilter hook points in kernel data
plane

•  Maps (<key, value> stores)

•  Chained filter functions

•  Match/action

•  Static verification of safety, guaranteed to terminate

9 ©2016 Open-NFP

Translating P4->eBPF
John Fastabend P4 to eBPF compiler

Why translate P4 to eBPF?

Table	and	diagrams	©	Mihai	Budiu	

10 ©2016 Open-NFP

Model for Transparent Offload

Programmer / user is “unaware” that eBPF code is “offloaded”

Requirements

• Partial pipeline offload

• Fallback to software for any eBPF code block

• Transparent user mode / kernel mode access to tables

eBPF	
Program	2	
(HW	offload)	

eBPF	
Program	3	

Packet	
In	

eBPF	
Program	1	
(HW	offload)	

PCI-E	crossing	

11 ©2016 Open-NFP

Linux Kernel Infrastucture

•  The Traffic Classifier (TC)
•  eXpress Data Path (XDP)

12 ©2016 Open-NFP

Linux Traffic Classifier (TC)
Component	 Linux	Component	
Shaping	 The	class	offers	shaping	capabili4es	

Scheduling	 A	qdisc	acts	as	a	scheduler	e.g.	FIFO	

Classifying	 The	filter	performs	classifica4on	through	a	classifier	
object.	

Policing	 A	policer	performs	policing	within	a	filter	

Dropping	 The	“drop”	ac4on	occurs	with	a	filter+policer	

Marking	 The	dsmark	qdisc	is	used	for	marking	

eBPF	
program	

TC	diagram	and	example	program	©	Jamal	Hadi	Salim		

13 ©2016 Open-NFP

eXpress Data Path (XDP)

What

•  High performance,
programmable network
data path

Utility

•  Useful for packet processing

•  forwarding

•  load balancing

•  DOS mitigation

•  firewalls, etc.

XDP	architecture	diagram	©	Tom	Herbert	

14 ©2016 Open-NFP

Hardware Intro to NFP (Network Flow
Processor) architecture

•  NUMA, Memory Hierarchy
•  Current eBPF translation on X86/ARM64/

PPC64

15 ©2016 Open-NFP

NUMA, Memory Hierarchy

Architecural Philosopies:

•  Bring the data close to where it needs to be processed

•  Facilitate highly concurrent access to memories

•  Mitigate branch costs and hide I/O & memory access
latencies

16 ©2016 Open-NFP

Current eBPF translation on X86/ARM64/PPC64

1) Write eBPF program as a simple
C Program

2) Compiled to eBPF byte code

3) Loaded into the Linux TC

4) Run through verifier

5) Cross compiled to X86/ARM64/PPC64

… Or now NFP Byte Code!
NFP	hardware	
offloaded	eBPF	

TC	

17 ©2016 Open-NFP

Dataflow

User	Space	

Traffic	Classifier	(TC)	

Driver	(XDP)	

Firmware	&	Hardware	

PCI-E	

Network	

Kernel	

User	

NFP	

TCP	Stack	

Packet	+	Descriptor,	
Meta	data	

Packet	+	Sk_Buf	

18 ©2016 Open-NFP

Supported Actions

User	Space	

Traffic	Classifier	(TC)	

Driver	(XDP)	

Firmware	&	Hardware	

PCI-E	

Network	

Kernel	

User	

NFP	

TCP	Stack	

Packet	+	Descriptor,	
Meta	data	

Packet	+	Sk_Buf	

Supported	Ac2ons	
•  Drop	
•  Mark	
•  Redirect	

Redirect	Drop	

Mark	

19 ©2016 Open-NFP

Accelerating P4/eBPF in NFP :
Implementation
•  Kernel core infrastructure
•  Map handling in the kernel
•  eBPF to NFP
•  Map Support
•  Optimizations

20 ©2016 Open-NFP

Kernel core infrastructure

User	Space	

Traffic	Classifier	(TC)	

Driver	(XDP)	NFP	Offload	
Control	

eBPF	Program	
+	Flags	

Firmware	&	Hardware	

PCI-E	

Network	

Kernel	

User	

NFP	

TCP	Stack	

skip_sw	|	skip_hw	

Offload	obj	

Stats	

21 ©2016 Open-NFP

eBPF to NFP

eBPF	Registers	

10	x	
64bits	

MAP	
DRAM	

X	 X	

X	 X	

A	

B	

16	x		
	2	x	
32bits	

ME	Registers	

Translate	

Communica4on	
Registers	

NFP	

•  Non-linear mapping

•  32 bit translation

22 ©2016 Open-NFP

•  Write interception

•  Ownership

•  Associating with a device

•  Read-Only single-user maps

•  Read-Only multi-user maps

•  Write-Enabled single-user maps

•  Write-Enabled multi-user maps

Map Handling in Kernel & Map Write Reflection

User	
Space	

Network	

MAP	 Kernel	
Space	

NFP	MAP	

Write	Reflec4on	
PCI-E	

Control	
Applica4on	

23 ©2016 Open-NFP

Optimizations
•  Dealing with different memory types

•  Peephole Optimizer
•  Dropping unnecessary jumps

•  Optimizing instructions with immediates

•  Fusing instructions

•  Full A/B register allocations

•  Liveness analysis with real state size tracking

24 ©2016 Open-NFP

Demo

25 ©2016 Open-NFP

Summary

•  Learnt the relationship between P4 and eBPF

•  Discovered the infrastructure in the Linux Kernel for eBPF
offload

•  Learnt about how the Netronome Smart NIC architecture is
optimised for network flow processing

•  Explored how we implemented the eBPF offload in hardware

26 ©2016 Open-NFP

QUESTIONS?

Dinan Gunawardena
dinan.gunawardena@netronome.com

Jakub Kicinski
Jakub.Kicinski@netronome.com

27 ©2016 Open-NFP

THANK YOU

