
©2016 Open-NFP 1

Open-NFP Summer Webinar Series:  
Session 1: P4 for Custom Identification, Flow Tagging,
Monitoring and Control

Nic Viljoen - Netronome
July 13, 2016

©2016 Open-NFP 2

Open-NFP www.open-nfp.org

Support and grow reusable research in accelerating dataplane network functions processing

Reduce/eliminate the cost and technology barriers to research in this space

• Technologies:
– P4, SDN, OpenFlow, Open vSwitch (OVS) offload

• Tools:
– Discounted hardware, development tools, software, cloud access

• Community:
– Website (www.open-nfp.org): learning & training materials, active Google group https://groups.google.com/d/

forum/open-nfp, open project descriptions, code repository
• Learning/Education/Research support:

– Summer seminar series, P4DevCon conference, Tutorials (P4 Developer Day), research proposal support
for proposals to the NSF, state agencies

Summer seminar series to further progress to our objective. Present applied reusable research.

https://groups.google.com/d/forum/open-nfp
https://groups.google.com/d/forum/open-nfp
https://groups.google.com/d/forum/open-nfp

©2016 Open-NFP 3

Universities Companies

P4DevCon Attendees/Open-NFP Projects*

*This does not imply that these organizations endorse Open-NFP or Netronome

©2016 Open-NFP 4

Session Agenda

Introduction
– Objectives

Analytics
– Why Analytics in the SmartNIC-Identification of potentially interesting traffic
– The Trusted Execution Environment

Demo
– Run through
– Simple Encap Test
– Decap and Monitoring/Analytics

SmartNIC architecture
– The MicroEngine
– The NFP Many Core Architecture

Summary

©2016 Open-NFP 5

Introduction: Objectives

Understanding the need for SmartNIC-based monitoring
– Understand why the development of the next-generation of the carrier datacenter requires compute node-based monitoring and identification

of potentially interesting traffic
– Understand why the SmartNIC is the correct place for this monitoring to be based
– Understand how to interleave with the data plane in a virtualized environment to ensure closed loop control
– Understand the motivation behind the Trusted Execution Environment - kernel extension, transparent hardware

Understanding programming options
– Understand the options (C, P4/C, eBPF)

The Code
– Understand the flow of a P4/C program - specifically the use of stateful C
– Understand how to use the finer details of NFP debugging-mailboxes, data watches and common issues
– Understand how to use existing primitives - such as timestamps

Understanding how the NFP architecture on the Agilio-CX enables high performing, fully programmable network offload
– The Many Core architecture and its advantages
– How time multiplexed multithreading reduces latency and increases throughput

©2016 Open-NFP 6

Disaggregation of the Network

SGW

PGW

MME

TOR

EPC

Rack-based Middleboxes

vSGW

vPGW

vMMEvEPC

SmartNIC

COTS Server-based Whitebox-with
service-based slicing

Inter VM
traffic highly
significant

Disaggregation drives the requirement for compute-based monitoring

©2016 Open-NFP 7

Why Place Analytics in the SmartNIC?

– Enables required depth of monitoring required for splitting-per VNF/VM based
monitoring

– Not feasible with CPU as this level of monitoring will take away significant amount
of cores from other processes

– There are likely spare computing cycles in the SmartNIC
– Low latency - the data being collected is already in the local cache
– Specialist monitoring equipment does not scale in disaggregated architectures:
– Either of these other options may require significant CAPEX

©2016 Open-NFP 8

Three Stages of Monitoring

Identification of potentially interesting traffic
– Tagging/higher level control logic
– Broad monitoring

Deeper monitoring
– NFP: Trusted Execution Environment (P4/C) - Our Focus

– Host: DPI or other host based monitoring

Predictive reaction
– React to potential problems before they are noticeable to the end-user

©2016 Open-NFP 9

Deeper Monitoring

NFP or host-based
– NFP: Trusted Execution Environment (C, P4/C or eBPF)
▶ Allowing a carrier to obtain a physical partition within the NFP which can be used as a TEE will

allow carriers to enable custom tagging, deeper monitoring (regexp, frameworks such as INT and
even rerouting to custom host modules)

▶ P4: Enables flexible encapsulation and custom tagging
– Host: DPI or other host-based monitoring
▶ Using APIs host based VNFs can be tied to the OVS environment

Predictive reaction
– Whitelisting/Blacklisting
– Compute node resource allocation
– QoS/SLA changes

OVS

TEE:P4/C
Sandbox

NFP

©2016 Open-NFP 10

Dynamic Identification

©2016 Open-NFP 11

P4/C

TEE

TEE

P4/C
eBPF

PIF

User Generated
Code

Intermediate
Representation X86

NFP

Compile Time

©2016 Open-NFP 12

eBPF

TEE

TEE

eBPF

User Generated
Code X86

NFP

Run Time

Netronome
Hooks

©2016 Open-NFP 13

DEMO

▶ Run through
▶ Simple Encap - custom identification and tagging
▶ Decap and monitoring/control

Slice
1

Slice
2

Slice
3

Slice
1

Slice
2

Slice
3

SmartNIC SmartNIC

vProbe

Tag Packets
According to

Slice

Route
According to

Slice

Monitor in
different ways
according to

slice and traffic

10Gb/s Link
Compute
Node

Compute
Node

©2016 Open-NFP 14

DEMO-P4 Program Pipeline

eth

ip

vS

tcp

udp vS

ip

Unk

tcp

udp

unk

drop_tbl

encap_udp_
tbl

encap_tcp_
tbl

fwd_ip_tbl

Drop

decap_tbl

Fwd

Encap

Decap/Monitor

Match Tables
Actions

Ingress Egress

ControlParse

Header
Definitions

©2016 Open-NFP 15

DEMO-C Action

Slice MatchHeader
Extract

Histogram
Monitoring

Percentage Large
Packets

Percentage of
Total Traffic

Drop

Drop

Forward

Forward

Forward

Drop

Focus of Demo

Mission Critical IoT

Voice

Non-Critical IoT

©2016 Open-NFP 16

The Microengine (ME)

©2016 Open-NFP 17

SmartNICs: Many-Core Approach (CMT)-NFP

MAC

PCIe

MAC

PCIe

Hierarchical Transactional
Memories

Multi-Threaded (8x)
cores

Reorder Engine is Key Feature due to the
use of ~1000 simultaneous threads

Reorder
Engine

Load
Balance

Many Multi-Threaded NPUs with specialized
hardware offload

©2016 Open-NFP 18

SMP vs CMT: Definitions

SMP (Symmetric MultiProcessing)
– Architecture where two or more identical single threaded cores are connected to a single

shared coherent main memory
– Homogenous cores work independently but share system bus and memory

CMT (Chip MultiThreaded) :
– Architecture employing hierarchical transactional memory with highly multithreaded cores
– Homogenous cores work independently and have access to a group of memories - The

higher level the memory the more cores have access to it

©2016 Open-NFP 19

SMP vs CMT for Network Processing

Characteristics of Networking Workloads
– Highly parallel processing requirements - packets are processed independently of other packets
– Due to an increase in virtualization and the introduction of techniques such as slicing, branching within code is significantly increasing
– High throughput, low latency (especially as mission critical IoT applications start to be hosted)

SMP (Symmetric MultiProcessing):
– Deep Pipeline-Processors used within this architecture tend to be heavier and single threaded (e.g MIPS64), leading to deeper processing pipelines, this

leads to more missed cycles per code branch
– Due to flat, coherent memory architecture (2/3 layers), lots of memory requests and cache locking, increasing latency
– Due to the single thread per core there are more cycles wasted as well as less cycles available - decreased throughput

CMT (Chip MultiThreaded) :
– Shallower pipeline - processors are more lightweight but multithreaded (e.g MicroEngines) therefore have very little dependency on branching
– The hierarchical memory structure (5/6 layers) of non-coherent memory allows for the avoidance of cache locking decreasing latency
– Due to the multithreaded cores very few cycles are wasted-significantly increasing throughput

Modern CMT Processors have up to 20X as many cycles available as current SMP architectures

©2016 Open-NFP 20

Summary

Custom tagging/encapsulation is easily defined within P4
– This allows fast innovation and reconfiguration of systems-‘fail fast model’
– Allows one-tuple based flow control

Using the combination of P4/C allows this to be paired with custom monitoring rules
– Adding statefulness to P4 is important in the aim to use it within NICs-allows monitoring and control to be easily implemented

The NFP is able to offload complex software-defined processes due to its 500+ concurrent threads and
transactional memory
– The Many Core architecture allows significantly more parallelization than would otherwise be possible
– This allows low cost, high performance software-defined networking in the data plane

Using spare cycles in the NFP we are able to offload some of the heavy duty work that monitoring applications
have to do
– This solves the problem of probing virtualized environments where physical probes do not scale and CPU resource is scarce
– This enables fine grained real time data plane analytics at the compute node
– Using the TEE as a space for customer innovation allows speed of movement and vendor independence due to kernel

analogues

©2016 Open-NFP 21

QUESTIONS?

Nic Viljoen  
nick.viljoen@netronome.com 

©2016 Open-NFP 22

THANK YOU

